平方根,又叫二次方根,表示为〔√ ̄〕,其中属于非负数的平方根称之为算术平方根。一个正数有两个实平方根,它们互为相反数;0只有一个平方根,就是0本身;负数有两个共轭的纯虚平方根。一般地,“√ ̄”仅用来表示算术平方根,即非负的平方根。如:√16=4。
开方符号_平方根[数学符号] -概述
平方根,又叫二次方根,对于非负实数来说,是指某个自乘结果等于的实数,表示为(√x),其中属于非负实数的平方根称算术平方根。有时我们说的平方根指算术平方根。正整数的平方根通常是无理数。
开方符号_平方根[数学符号] -知识讲解
平方根平方根
一.知识结构
二.教学重点与难点分析
本节重点是平方根和算术平方根的概念.平方根是开方运算基础,是引入无理数的准备知识.平方根概念的正确理解有助于符号表示的理解,是正确求平方根运算的前提,而且直接影响到二次根式的学习.算术根的教学不但是本章教学的重点,也是今后数学学习的重点.在后面学习的根式运算中,归根结底是算术根的运算,非算术根也要转化为算术根.
本节难点是平方根与算术平方根的区别于联系.首先这两个概念容易混淆,而且各自的符号表示意义学生不是很容易区分,教学中要抓住算术平方根式平方根中正的那个,讲清各自符号的意义,区分两种表示的不同.对于平方根运算不仅数有限制,而且结果有两个,这是与以前学过的数的运算很大的区别,要让学生真正理解有一定的困难.
三.教法建议
1.有特殊到一般归纳总结,平方根是平方的逆运算,得出平方根的概念后,让学生观察具体数的平方关系,分析特点归纳总结出平方根的一般规律,有利于学生理解知识的来源,了解数学的归纳思想.
2.开方与平方互为逆,与其他运算相比较对数有些条件限制,是学生从整体认识开放运算.平方根和算术平方根的区别与联系,由于是本节的难点,在讲清平方根的基础上,对比讲解算术平方根,列出两者概念、性质、运算、符号等间的区别,各知识点间的类比学生易于记忆.
3.本节主要内容是平方根和算术平方根,注意数字要简单,关键让学生理解概念.另外在文字叙述时注意语言的严谨规范.
10.2
一.知识结构:
二.教学重点难点分析:
教学重点是用计算器求一个正数的平方根的程序.无论实际生活,还是其他学科都会经常用到计算器求一个数的平方根,这也是学生的基本技能之一.
教学难点准确用计算器求一个正数的平方根.由于开平方运算要用到第二功能键,学生生容易漏掉此步操作,在教学过程中要着重说明此键的作用功能.
三.教法建议:
在给学生讲解如何利用计算器求一个数的平方根时,讲解速度慢些首先要学生找到键操作后,再讲解下一步.尤其要强调第二功能键的作用功能,在求解时使学生了解第二功能键的必要性.另外课堂上多让要学生亲自动手实践,熟悉各键的功能及求解的步骤.
开平方公式:
X(n+1)=Xn+(A/Xn-Xn)1/2.。(n,n+1是下角标)
举例
例如,A=5:
5介于2的平方至3的平方;之间。我们取初始值2.1,2.2,2.3,2.4,2.5,2.6,2.7,2.8,2.9都可以,我们最好取中间值2.5。
第一步:2.5+(5/2.5-2.5)1/2=2.2;
即5/2.5=2,2-2.5=-0.5,-0.5×1/2=-0.25,2.5+(-0.25)=2.25,取2位数2.2。
第二步:2.2+(5/2.2-2.2)1/2=2.23;
即5/2.2=2.27272,2.27272-2.2=-0.07272,-0.07272×1/2=-0.03636,2.2+0.03636=2.23。取3位数。
第三步:2.23+(5/2.23-2.23)1/2=2.236。
即5/2.23=2.2421525,2.2421525-2.23=0.0121525,0.0121525×1/2=0.00607,2.23+0.00607=2.236.
每一步多取一位数。这个方法又叫反馈开方,即使你输入一个错误的数值,也没有关系,输出值会自动调节,接近准确值。
例如A=200.
200介如10的平方---20的平方之间。初始值可以取11,12,13,14,15,16,17,18,19。我们取15.
第一步:15+(200/15-15)1/2=14。取19也一样得出14.。:19+(200/19-19)1/2=14.。
第二步:14+(200/14-14)1/2=14.1。
第三步:14.1+(200/14.1-14.1)1/2=14.14.
这个方法的依据是根据牛顿切线法得来。也可以通过牛顿二项式定理推出。
A=(X±Y)^k=展开,把A即(X±Y)^k展开后代入公式就得到推导过程。X是假想值,Y是误差值。
X(n+1)=Xn-(X^k-A)/kX^(k-1)=Xn-f(X)/f'(x)=Xn+(A/X^(k-1)-Xn)1
(f(x)=X^K-A;f'(X)=KX^(k-1);王晓明王蕊珂编写
开方符号_平方根[数学符号] -求平方根教学重点难点分析:
教学重点是用计算器求一个正数的平方根的程序。无论实际生活,还是其他学科都会经常用到计算器求一个数的平方根,这也是学生的基本技能之一。
教学难点准确用计算器求一个正数的平方根。由于开平方运算要用到第二功能键,学生容易漏掉此步操作,在教学过程中要着重说明此键的作用功能教法建议:
在给学生讲解如何利用计算器求一个数的平方时,应掌握方法。
开方符号_平方根[数学符号] -【性质与概念】
平方根的基础信息
一个正数如果有平方根,那么必定有两个,它们互为相反数。显然,如果我们知道了这两个平方根的一个,那么就可以及时的根据相反数的概念得到它的另一个平方根。
如果一个正数x的平方等于a,即x2=a,那么这个正数x叫做a的算术平方根。a的算术平方根记为,读作“根号a”,a叫做被开方数。
规定:0的平方根是0。
负数在实数范围内不能开平方,只有在复数范围内,才可以开平方根。例如:-1的平方根为±1i,-9的平方根为±3i。
平方根包含了算术平方根,算术平方根是平方根中的一种。
任何复数都有平方根。
算术平方根为:√a=a(a为非负数)
被开方数是乘方运算里的幂。
求平方根可通过逆运算平方来求。
开平方:求一个非负数a的平方根的运算叫做开平方,其中a叫做被开方数。
若x的平方等于a,那么x就叫做a的平方根,即±√a=±x(a为非负数)
性质
与平方根的关系
正数的平方根有两个,它们为相反数,其中正数的平方根,就是这个数的算术平方根。
产生
根号(即算术平方根)的产生源于正方形的对角线长度“根号二”,这个“根号二”的发现一度引起了毕达哥拉斯学派的恐慌。因为按当时的权威解释(也就是毕达哥拉斯学派的学说),万物皆数(也就是说世界上所有的事物都可以用数来表示)。
对于这个无理数“根号二”,最终人们选取了用根号来表示。
开方符号_平方根[数学符号] -求平方根算法
算法1
用Ruby求平方根。(注:sqrt=squareroot平方根)
moduleMyMath
defsqrt(num,rx=1,e=1e-10)#参数1,需要求平方根的目标;参数2,迭代区间;参数3,精度
num*=1.0#目标初始化
(num-rx*rx)。abs<e?rx:sqrt(num,(num/rx+rx)/2,e)#计算平方根
end
end
includeMyMath
putssqrt(2)#求2的平方根
putssqrt(2,5,0.01)#求2的平方根+迭代区间与精度。
C语言版求平方根
doubleSqrt(doublea,doublep)//a是被开平方根数,p是所求精度
{doublex=1.0;doublecheak;
do{x=(a/x+x)/2.0;cheak=x*x-a;}while(cheak<-p||cheak>p);returnx;}intmain(intargc,char*argv[])
{printf("%.4fn",Sqrt(2.0,0.0001));//有时输出精度要比所求精度少一位,即%.3f
printf("%.4fn",Sqrt(0.09,0.0001));
return0;}
输出结果:
1.4142
0.3000
平方数表
12=122=432=942=1652=2562=3672=4982=6492=81102=100112=121122=144132=169142=196152=225162=256172=289182=324192=361202=400212=441222=484232=529242=576252=625262=676272=729282=784292=841302=900
算法2
首先从小数点往前往后每两位分成一节
举个例子:计算√10
3.16227--------
-----------------------------
√10’00’00’00’00’--------
3|93第1位3
-------
61|1002*3*10+1=61第2位1
|61
-------
626|39002*31*10+6=626第3位6
|3756
--------
6322|144002*316*10+2=6322第4位2
|12644
---------
63242|175600
|126484
-----------
632447|4911600
|4427129
---------
××××××00(如此循环下去)
所以,√10=3.16227…
再如√7
=2.645…
---------------------
2|7
4
--------------
46|300
276
--------------------
524|2400
2096
-----------------------------
5285|30400
26425
-------------------------------
5290?|397500
算法3
上述笔算开方方法是我们大多数人上学时课本附录给出的方法,实际中运算中太麻烦了。我们可以采取下面办法,实际计算中不怕某一步算错!而上面方法就不行。
比如136161这个数字,首先我们找到一个和136161的平方根比较接近的数,任选一个,比方说300到400间的任何一个数,这里选350,作为代表。
我们先计算0.5(350+136161/350),结果为369.5。
然后我们再计算0.5(369.5+136161/369.5)得到369.0003,我们发现369.5和369.0003相差无几,并且,3692末尾数字为1。我们有理由断定3692=136161。
一般来说,能够开方开的尽的,用上述方法算一两次基本结果就出来了。再举个例子:计算√469225。首先我们发现6002<469225<7002,我们可以挑选650作为第一次计算的数。即算0.5(650+469225/650)得到685.9。而685附近只有6852末尾数字是5,因此6852=469225。从而√469225=685。
对于那些开方开不尽的数,用这种方法算两三次精度就很可观了,一般达到小数点后好几位。
实际中这种算法也是计算机用于开方的算法。