动量矩定理 动量矩定理 动量矩定理-基本简介

动力学普遍定理之一,它给出质点系的动量矩与质点系受机械作用的冲量矩之间的关系。动量矩定理有微分形式和积分形式两种。微分形式的动量矩定理定义质点系中第 i个质点对某定点O的动量矩为L=ri×mivi(ri为第i个质点的矢径,mivi为第i个质点的动量),它所受外力对点O的力矩为M,所受内力对点O的力矩为M。将上式的两侧对时间求导数,有。即在某一时间间隔内,刚体对z轴动量矩(Izω)的改变,等于在同一时间间隔内作用于刚体上所有外力对 z轴的冲量矩的代数和。

动量矩定理_动量矩定理 -基本简介

微分形式的动量矩定理定义质点系中第 i个质点对某定点O的动量矩为L=ri×mivi(ri为第i个质点的矢径,mivi为第i个质点的动量),它所受外力对点O的力矩为M,所受内力对点O的力矩为M。将上式的两侧对时间求导数,有。考虑所有质点的合成效果,可得: (1)


动量矩定理

式中


动量矩定理

为作用于质点系诸外力对点O的力矩的矢量和;


动量矩定理

为诸内力对点O的力矩的矢量和。但因内力具有大小相等、方向相反和共线的特点,故


动量矩定理

。同时,


动量矩定理

为质点系对点O的总动量矩,故(1)式可写作:

。(2)

式(2)就是用微分形式表示的动量矩定理,它表明:质点系对某定点 O的动量矩对时间的导数等于质点系所受诸外力对该点的力矩的矢量和。若将式 (2)两边投影到直角坐标轴上,则有:质点系对某定轴的动量矩的时间导数等于质点系上所受诸外力对相同轴的力矩的代数和。


动量矩定理

积分形式的动量矩定理 将式(2)改写成 dLO=


动量矩定理

并进行积分。若LL和L分别表示质点系在时刻t1和t2对某点O的动量矩,则

动量矩定理 动量矩定理 动量矩定理-基本简介

式中Gi为作用于质点i上的外力在时间间隔 (t2-t1)内对O点的冲量矩。式(3)就是用积分形式表示的动量矩定理,它表明:在某力学过程的时间间隔内,质点系对某点动量矩的改变,等于在同一时间间隔内作用于质点系所有外力对同一点的冲量矩的矢量和。

对刚体绕定轴z以角速度ω转动(转动惯量为Iz)的情况,可将式(3)投影到z轴上,得: ,

即在某一时间间隔内,刚体对z轴动量矩(Izω)的改变,等于在同一时间间隔内作用于刚体上所有外力对 z轴的冲量矩的代数和。

质点是质点系的一个特殊情况,故动量矩定理也适用于质点。

  

爱华网本文地址 » http://www.413yy.cn/a/8104100103/178401.html

更多阅读

墨菲定理-美国爱德华·墨菲所提论断 墨菲定理是什么

摩菲定理(英语:Murphy's Law),又译墨菲定律、莫非定律,(香港译为梅菲定律),它的具体内容是“凡是可能出错的事必定会出错”,指的是任何一个事件,只要具有大于零的机率,就不能假设它不会发生。在科学和算法方面,它与英文所谓的“worst-case scena

费马小定理与循环小数 费马小定理 逆元

(选自《数论妙趣——数学女王的盛情款待》第十章 循环到无穷)我们知道,如果某个整数的倒数,可以表达为有限小数,其必要条件是该整数只含有2,5的方幂,或者兼而有之。否则,将出现循环小数。研究循环小数,就要掌握循环节的规律。对此,费马小

正弦定理的教学反思 垂径定理教学反思

在备课中有两个问题需要精心设计.一个是问题的引入,一个是定理的证明.课本通过一个实际问题引入,但没有深入展开下去;对正弦定理的证明是利用三角形的面积公式导出的,但不够自然.为了处理好这两个问题,我首先确定了一个基本原则,就是充分

声明:《动量矩定理 动量矩定理 动量矩定理-基本简介》为网友别太迁就分享!如侵犯到您的合法权益请联系我们删除