几何图形的定义 几何图形 几何图形-几何图形,几何图形-定义

几何图形,即从实物中抽象出的各种图形,可帮助人们有效的刻画错综复杂的世界。生活中到处都有几何图形,我们所看见的一切都是由点、线、面等基本几何图形组成的。几何源于西文西方的测地术,解决点线面体之间的关系。几何图形分为立体图形和平面图形,各部分不在同一平面内的图形叫做立体图形(solid figure),如长方体、圆球、圆锥等;各部分都在同一平面内的图形叫做平面图形(Plane figure),如点、直线、线段、射线、三角形、四边形等。无穷尽的丰富变化使几何图案本身拥有无穷魅力。

几何图形_几何图形 -几何图形

线段・射线・直线

平面图形

圆・椭圆・扇形・弓形

多边形(三角形・梯形・平行四边形・菱形・矩形・正方形・鹞形・ 五边形・六边形)

立体图形

多面体・正多面体・四面体・长方体・立方体・平行六面体・棱柱・反棱柱・棱锥・圆柱・圆锥・圆台・椭球・球 ・球缺・球冠・球台

几何图形_几何图形 -定义


几何图形
几何图形

1.点、线、面、体这些东西,可帮助人们有效地刻画错综复杂的世界,它们都称为几何图形(geometric figure)。从实物中抽象出的各种图形统称为几何图形。有些几何图形的各部分不在同一平面内,叫做立体图形(solid figure)。有些几何图形的各部分都在同一平面内,叫做平面图形(Plane figure)

。虽然立体图形与平面图形是两类不同的几何图形,但它们是互相联系的。

几何图形一般分为立体图形和平面图形

2・ 几何体的概念:几何体简称体,像正方体、球体、棱椎体等都是几何体。包围着体的是面,面有平面和曲面两种,面与面相交的地方形成线,线与线相交的地方叫做点。


矢量几何图形_其他矢量图_矢量图标|标识标志

3.用运动的观点来理解点,线,面,体。点动成线,线动成面,面动成体。

几何图形(14张)

几何图形_几何图形 -公式

正方形


正方形

a-------边长 C=4a S=a2

长方形

a和b-----边长 C=2(a+b) S=ab

三角形

a,b,c-----三边长 h-----a边上的高 s-----周长的一半 A,B,C-----内角

其中s=(a+b+c)/2 S=ah/2 =ab/2・ sinC =[s(s-a)(s-b)(s-c)]1/2 =a2sin BsinC/(2sinA)

四边形


几何图形

d,D-----对角线长 α-----对角线夹角 S=dD÷2・sinα

几何图形的定义 几何图形 几何图形-几何图形,几何图形-定义

平行四边形

a,b-----边长 h-----a边的高 α-----两边夹角 S=ah =ab

菱形

a-----边长 α-----夹角 D-----长对角线长 d-----短对角线长 S=Dd÷2 =a2

梯形

a和b-----上、下底长 h-----高 m-----中位线长 S=(a+b)h÷2 =mh


几何图形

r-----半径 d-----直径 C=πd=2πr S=πr2 =πd2÷4

扇形

r-----扇形半径 a-----圆心角度数 C=2r+2πr×(a÷360) S=πr2×(a÷360)

弓形

l-----弧长 b-----弦长 h-----矢高 r-----半径 α-----圆心角的度数

S=r2/2・(πα/180-sinα) =r2arccos[(r-h)/r] - (r-h)(2rh-h2)1/2 =παr2/360 - b/2・[r2-(b/2)2]1/2 =r(l-b)/2 + bh/2 ≈2bh/3

圆环

R-----外圆半径 r-----内圆半径 S=π(R²-r²) 或S=πR²-πr²

几何还有立体几何:

正方体

a-----棱长 V=12a S=a×a×a

长方体

a-----长

b-----宽


几何图形

c-----高 V=(a+b+c)×4 S=(a×b)+(a×c)+(b×c)

圆柱

πr²-------底面积 h-----高 V=πr²×h

万能公式

底面积×高

棱柱

圆锥

13-----三分之一 V=13πr²×h (解释:等底等高圆柱体体积的三分之一)

球体


球体

V=43πr²

万能公式

V=h1÷6(顶面积+4中间截面积+底面积)

奥数部分

蝴蝶定理

鸟头定理

燕尾定理

相似

几何图形_几何图形 -分类


几何图形

立体几何图形可以分为以下几类: 第一类:柱体;包括:圆柱和棱柱,棱柱又可分为直棱柱和斜棱柱,棱柱体按底面边数的多少又可分为三棱柱、四棱柱、N棱柱;棱柱体积统一等于底面面积乘以高,即V=SH,第二类:锥体;包括:圆锥体和棱锥体,棱锥分为三棱锥、四棱锥以及N棱锥;棱锥体积统一为V=SH/3,第三类:旋转体:包括:圆柱;圆台;圆锥;球;球冠;弓环;圆环;堤环;扇环;枣核形;等其表面积公式为:S=2*L*π*R(L是基图的周长,π是常数,R是重心到轴的距离)其体积公式为:V=2*S*π*R(S是基图的面积,π是常数,R是重心到轴的距离)第四类:截面体:包括:棱台;圆台;斜截圆柱;斜截棱柱;斜截圆锥;球冠;球缺等其表面积和体积一般都是根据图形加减解答。

平面几何图形

1.圆形(包括正圆,椭圆)

2.多边形:三角形(分为一般三角形,直角三角形,等腰三角形,等边三角形)、四边形(分为不规则四边形,梯形【分为直角梯形和等腰梯形】,平行四边形,平行四边形又分:矩形,菱形,正方形)、五边形、六……

注:正方形既是矩形也是特殊的菱形。

3.弓形(由直线和圆弧构成的图形,包括优弧弓,劣弧弓,抛物线弓等)。

4.多弧形(包括月牙形,谷粒形,太极形葫芦形等)

几何图形_几何图形 -几何级数公式

S=a,aq,aq^2,aq^3....aq^n (1)

qS=aq,aq^2,aq^3...aq^(n+1) (2)

(2)-(1)得

(q-1)S=aq^(n+1)-a

S=[aq^(n+1)-a]/(q-1)

  

爱华网本文地址 » http://www.413yy.cn/a/8104090103/175290.html

更多阅读

扎头发的方法有几种 精 简单的扎头发方法

今天在网上看到了几种扎头发的方法,真的是简单易学,而且都很漂亮精致,下面小编就为大家一一介绍吧。扎头发的方法有几种 精——第一款扎头发的方法有几种 精 1、先把头顶的头发分成三份扎头发的方法有几种 精 2、把2放在3的下面扎头发

无理数的尾数是几在何? 初2无理数数学题

《就事论事》(节选):无理数的尾数是几在何? 易亚苏 无理数从发觉根号2始。因无理数的介入,原本清晰的数概念,变得有几分莫名。无理数的诞生,拓展了数的概念,扩大了数的领域,反而模糊了对数的领悟。 有得有失,义广含多。不失不得,意少物明。 无

律师函的定义及格式 律师函格式

律师函的定义及格式  律师函,又称律师信,是指律师接受客户的委托就有关事实或法律问题进行披露、评价,进而提出要求以达到一定效果而制作、发送的专业法律文书。   1、律师函的本质  律师函是律师对某一事实进行法律评价和

犬儒主义的定义与表现形式 形式主义的表现

犬儒主义的定义与表现形式 百灵社区·《前沿周刊》◇刘松萝犬儒主义的定义与表现形式——《超越犬儒主义》开篇刘松萝一、革新、乱世与犬儒主义20世纪是中国发生巨变的世纪。与历史上的保守相反,中国近代变革的进展之迅速,让人头晕目

声明:《几何图形的定义 几何图形 几何图形-几何图形,几何图形-定义》为网友苍穹分享!如侵犯到您的合法权益请联系我们删除