约数:如果一个整数a能把两个整数b和c整除,那么这两个数b和c就是这个数a的约数。约数是有限的,一般用最大公约数。所有数都有约数1。正约数是约数中的正数。例:15能被3整除,我们就说15是3的倍数,3是15的约数。
正约数_正约数 -正约数
约数约数:如果一个整数能被两个整数整除,那么这两个数就是这个数的约数。约数是有限的,一般用最大公约数。所有数都有约数1。
例:15能被3整除,我们就说15是3的倍数,3是15的约数。
正约数表示正的约数
如果是求所有公约数,那么还是用15举例:15首先能被1整除,及1、15。再考虑2,显然不行,随后考虑3,发现能整除,4也显然不行,以此类推。最后所有公约数就是1、3、5、15。
正约数_正约数 -个数定理
正约数对于一个大于1正整数n可以分解质因数:n=p1^a1*p2^a2*p3^a3*…*pk^ak,则n的正约数的个数就是(a1+1)(a2+1)(a3+1)…(ak+1).其中p1,p2,p3…pk都是n的质因数;a1、a2、a3…ak是p1、p2、p3…pk的指数。
定理证明
首先同上,n可以分解质因数:n=p1^a1*p2^a2*p3^a3*…*pk^ak,由约数定义可知p1^a1的约数有:p1^0,p1^1,p1^2......p1^a1,共(a1+1)个;同理p2^a2的约数有(a2+1)个......pk^ak的约数有(ak+1)个。故根据乘法原理:n的约数的个数就是(a1+1)(a2+1)(a3+1)…(ak+1)。
例题
例题:正整数378000共有多少个正约数?解:将378000分解质因数378000=2^4×3^3×5^3×7^1由约数个数定理可知378000共有正约数(4+1)×(3+1)×(3+1)×(1+1)=160个。