真空的含义是指在给定的空间内低于一个大气压力的气体状态,是一种物理现象。在“虚空”中,声音因为没有介质而无法传递,但电磁波的传递却不受真空的影响。事实上,在真空技术里,真空系针对大气而言,一特定空间内部之部份物质被排出,使其压力小于一个标准大气压,则我们通称此空间为真空或真空状态。真空常用帕斯卡(Pascal)或托尔(Torr)做为压力的单位。在自然环境里,只有外太空堪称最接近真空的空间。1641年意大利数学家托里拆利在一根长管子内加满水银,然后很缓慢的将管口倒转在一个盛满水银的盆内,管子内水银柱的末端是 76 厘米高。这时玻璃管最上方无水银地带是真空状态。这一实验为“托里拆利实验”,完成实验的玻璃管为“托里拆利管”。爱因斯坦在用场论观点研究引力现象时,已经认识到空无一物的真空观念是有问题的,他曾提出真空是引力场的某种特殊状态的想法。首先给予真空崭新物理内容的是P.A.M.狄拉克。狄拉克于1930年为了摆脱狄拉克方程负能解的困境,提出真空是充满了负能态的电子海。
真空_真空[物理学定义] -基本含义
在“真空”中,声音因为没有介质而无法传递,但电磁波的传递却不受真空的影响。事实上,在真空技术里,真空系针对大气而言,一特定空间内部之部份物质被排出,使其压力小于一个标准大气压,则我们通称此空间为真空或真空状态。真空常用帕斯卡(Pascal)或托尔(Torr)做为压力的单位。在自然环境里,只有外太空堪称最接近真空的空间。
1641年意大利数学家托里切利在一根长管子内加满水银,然后很缓慢的把管口倒转在一个盛满水银的盆内,管子内水银柱的末端是 76 厘米高。这时玻璃管最上方无水银地带是真空状态。这一实验为“托里拆利实验”,完成实验的玻璃管为“托里拆利管”。
1654年马德堡市长奥托・冯・格里克在雷根斯堡向皇帝展示了他所设计的半球实验。他制造了两个直径51厘米的红色铜制半球,半球中间有一层浸满了油的皮革,用以让两个半球能完全密合。接着他用他自制的真空泵把球内的空气抽掉,此时两个沉重的铜制半球在没有任何接着剂的辅助下紧密地合而为一,让人十分惊讶。但格里克实验的高潮才正要开始,他为了证明两半球的结合是多么紧密、扎实。市长拉来了16匹马,分成两队使劲拉,在一声巨响中,两个半球被拉开了。这就是物理学史上著名的“马德堡半球实验(Magdeburg hemispheres test)”
真空_真空[物理学定义] -真空分类
真空
现代许多高精密度的产品在制造过程中的某些阶段必需
使用程度不一的真空才能制造,如半导体、硬盘、镜片。在实验室和工厂中制造真空的方法是利用泵在密闭的空间中抽出空气以达到某种程度的真空。在真空技术中按照压力的高低我们可以区分为:
粗略真空(Rough Vacuum) 760 ~ 10 Torr
中度真空(Medium Vacuum) 10 ~ Torr
高真空 (High Vacuum)~ Torr
超高真空(Ultra-High Vacuum) Torr以下
真空_真空[物理学定义] -物理名词
概论
在真空科学中,真空的含义是指在给定的空间内低于一个大气压力的气体状态。人们通常把这种稀薄的气体状态称为真空状况。这种特定的真空状态与人类赖以生存的大气在状态相比较,主要有如下几个基本特点:
真空[物理学定义]
(1)真空状态下的气体压力低于一个大气压,因此,处于地球表面上的各种真空容器中,必将受到大气压力的作用,其压强差的大小由容器内外的压差值而定。由于作用在地球表面上的一个大气压约为101325N/m2(Pa),因此当容器内压力很小时,则容器所承受的大气压力可达到一个大气压。(2)真空状态下由于气体稀薄,单位体积内的气体分子数,即气体的分子密度小于大气压力的气体分子密度。因此,分子之间、分子与其他质点(如电子、离子等)之间以及分子与各种表面(如器壁)之间相互碰撞次数相对减少,使气体的分子自由程增大。
物理真空
本指没有任何实物粒子存在的空间,但什么都没有的空间是不存在的。而假设你把一个空间的气体都赶跑,会发现还是不时有基本粒子在真空中出现又消失,无中生有。物理上的真空实际上是一片不停波动的能量之海。当能量达到波峰,能量转化为一对对正反基本粒子,当能量达到波谷,一对对正反基本粒子又相互湮灭,转化为能量。
工业真空
工业上的真空指的是气压比一标准大气压小的气体空间,是指稀薄的气体状态,又可分为高真空、中真空和低真空,地球以及星球中间的广大太空就是真空。一般是用特制的抽气机得到真空的。它的气体稀薄程度用真空计测定,现在已能用分子抽气机和扩散抽气机得到0.0000000001大气压的高真空。真空在科学技术,电真空仪器,电子管和其他电子仪器方面,都有很大用途。
正负电子对撞机
正负电子对撞机的作用绝不仅仅是一对正负电子相撞产生光子和能量那么简单,一对光子也可以相撞产生一对正负质子之类,而相撞使相撞所处的那部分真空可以激发到高能态,可以产生更多各式各样的基本粒子,为研究宇宙的起源和组成服务。
按其词源本义是虚空,即一无所有的空间;按现代物理的观点,真空不空,其中包含着极为丰富的物理内容。一种说法是,当容器中的压力低于大气压力时,把低于大气压力的部分叫做真空,而容器内的压力叫绝对压力。另一种说法是,凡压力比大气压力低的容器里的空间都称做真空。真空有程度上的区别:当容器内没有压力即绝对压力等于零时,叫做完全真空;其余叫做不完全真空。
基本原则
真空一定是空间,空间不一定是真空。
有空间才有真空。
含义及特点
真空[物理学定义]
在真空科学中,真空的含义是指在给定的空间内低于一个大气压力的气体状态。人们通常把这种稀薄的气体状态称为真空状况。这种特定的真空状态与人类赖以生存的大气在状态相比较,主要有如下几个基本特点:( 1 )真空状态下的气体压力低于一个大气压,因此,处于地球表面上的各种真空容器中,必将受到大气压力的作用,其压强差的大小由容器内外的压差值而定。由于作用在地球表面上的一个大气压约为 101325N/m2,因此当容器内压力很小时,则容器所承受的大气压力可达到一个大气压。
( 2 )真空状态下由于气体稀薄,单位体积内的气体分子数,即气体的分子密度小于大气压力的气体分子密度。因此,分子之间、分子与其他质点(如电子、离子等)之间以及分子与各种表面(如器壁)之间相互碰撞次数相对减少,使气体的分子自由程增大。
物理真空
真空[物理学定义]
本指没有任何实物粒子存在的空间,但什么都没有的空间是不存在的。而假设你把一个空间的气体都赶跑,会发现还是不时有基本粒子在真空中出现又消失,无中生有。物理上的真空实际上是一片不停波动的能量之海。当能量达到波峰,能量转化为一对对正反基本粒子,当能量达到波谷,一对对正反基本粒子又相互湮灭,转化为能量。
工业真空
真空[物理学定义]
工业上的真空指的是气压比一标准大气压小的气体空间,是指稀薄的气体状态,又可分为高真空、中真空和低真空,地球以及星球中间的广大太空就是真空。一般是用特制的抽气机得到真空的。它的气体稀薄程度用真空计测定,现在已能用分子抽气机和扩散抽气机得到0.0000000001大气压的高真空。真空在科学技术,电真空仪器,电子管和其他电子仪器方面,都有很大用途。
真空区域托(Torr)压强范围)帕(Pa)低真空760~10101325~1333中真空10~10-31333~1.33×10-1高真空10-3~10-81.33×10-1~10-6超高真空10-8~10-1210-6~10-10极高真空<10-12<10-10
正负电子对撞机
真空[物理学定义]
正负电子对撞机的作用绝不仅仅是一对正负电子相撞产生光子和能量那么简单,一对光子也可以相撞产生一对正负质子之类,而相撞使相撞所处的那部分真空可以激发到高能态,可以产生更多各式各样的基本粒子,为研究宇宙的起源和组成服务。
真空[物理学定义]
认识过程
真空[物理学定义]
人类关于真空的认识经历了几次根本的变革和反复。古希腊德谟克利特的原子论认为所有的物质都是由原子组成,原子之外就是虚空。17世纪R.笛卡儿提出以太漩涡说,认为空间充满了以太,并用以说明行星的运动。不久I.牛顿建立以运动三定律和万有引力定律为基石的牛顿力学,成功地解决了行星绕日运动问题,引力被认为是超距作用的,无需以太阳作为传递媒介,从而否定了以太论。19世纪发现光的波动性,认为波的传播必须依靠介质,特别是后来发现了电磁场的波动性,以太论再度兴起,认为宇宙中不论何时何地,任何物体内无不充满了以太,光和电磁波被解释为以太的机械振动。后来虽然在观念上有所变化,把光和电磁波看成电磁场的振动,但以太仍然保留着某种绝对的性质,它可以看成是描述万物运动的绝对静止的参考系。19世纪末20世纪初各种试图探测地球相对于以太运动速度的实验均告失败,A.爱因斯坦建立狭义相对论,再次否定了这种作为绝对静止以太的存在。稍后,爱因斯坦在用场论观点研究引力现象时,已经认识到空无一物的真空观念是有问题的,他曾提出真空是引力场的某种特殊状态的想法。首先给予真空崭新物理内容的是P.A.M.狄拉克。狄拉克于1930年为了摆脱狄拉克方程负能解的困境,提出真空是充满了负能态的电子海。当负能态的电子吸收了足够的能量跃迁到正能态成为普通电子时,电子海中才能留下可观测的空穴,即正电子。从体系的能量角度考查,这种情况比只有电子海的真空状态要高,因此真空就是能量最低的状态。从现代量子场论的观点看,每一种粒子对应于一种量子场,粒子就是对应的场量子化的场量子。当空间存在某种粒子时,表明那种量子场处于激发态;反之不存在粒子时,就意味着场处于基态。因此,真空是没有任何场量子被激发的状态,或者说真空是量子场系统的基态。
关于真空的近代认识不再是哲学上的思辨,而是可通过实验来检验的。有不少现象都需要用真空的近代观念予以说明。例如氢原子能级的兰姆移位和电子的反常磁矩,实验上已经以非常高的精度证实了真空极化的效应;高能正负电子对撞湮没为高能光子,反之高能光子可使真空激发出大量的粒子,也是很好的明证。对于真空的认识尚属初级探索阶段,物理学家还在探索真空自发破缺和真空相变等问题,必将推动物理学的进一步发展。
性质
真空具有如下性质:
1.空非无。如果真空中没有粒子,我们就会准确的测出场(0)与场的变化曲率(0),然而海森堡不确定性原理表明,我们不可能同时精确地测出一对共轭量,所以,可以“空”,不能“无”。因此,在真空中,粒子不停地以虚粒子、虚反粒子对的形式凭空产生,而又互相湮灭,在这个过程中,总的能量保持不变。
2.真空存在极性,因此说真空是不对称的。但这种不对称是相对局部的,在相对整体上又是对称的,如此的循环嵌套构成了真空的这个性质。
3.真空的每个局部具备了真空的全体性质。大和小是相对而言的。时间也是相对于空间而言的,时间不能脱离了具体的空间而单独的存在。
应用
航天器轨道飞行提供的真空和微重力环境,是一个宝库,为人们提供了地面上难以获得的科学实验和生产工艺条件,进行地面上难以进行的科学实验,生产地面上难以生产的材料、工业产品和药物。
在高真空和微重力环境中进行生命和生物科学实验,不会有有机物污染,发生混入或测定错误,细菌等实验用的微生物不会到处扩散,十分安全。 在零重力或微重力条件下,可进行无容器冶炼,这不会有任何杂质混入,可以获得高品质的合金;可将不同比重的金属或非金属均匀地混合,获得新型合金材料;可以克服地面加工存在的组分过冷起伏和密度大等缺陷,生长出高质量、大直径的单晶体砷化镓等半导体材料;可以生产百分之百圆度的滚珠轴承等圆球工业产品,而在地面上,由于重力的影响,滚珠轴承等总不是真正的球形。
太空制药是真空和微重力环境利用的重要方面。在地面上制药,由于地球重力作用,培养物会发生沉淀,处在沉淀中的微生物会因缺氧而死亡;如输氧搅拌,所形成的低压小气泡又会破坏细胞;如加防泡剂,则会降低氧的溶解度,有碍微生物的繁殖,形成恶性循环。而在微重力环境中,培养物液体中含有大量的气泡,也不会沉淀,微生物可随时获得氧气,生长速度比地面快一倍以上。可高效率、高纯度地制造许多药物,如治疗烧伤的表皮生长素、治疗贫血的红血球生长素、防治病毒感染的免疫血清、治疗肺气肿的胰蛋白酶抑制素、治疗血栓的尿激酶、治疗血友病的抗溶血因子8.治疗糖尿病的β细胞、治疗癌症的干扰素等40多种。主要的制药方法是电泳法,将组分不同的混合物在直流电场作用下精确地分离成不同成份。其设备第一代为静态电泳仪,第二代为连续流动电泳仪.