高斯定理求电势 电势 电势-定理定律,电势-物理原理

电势是描述静电场特性的基本物理量之一,标量。库仑定律指出,两静止点电荷之间的相互作用力是有心力,其方向沿两者的连线,其大小只依赖于两者的距离。根据库仑定律和场强叠加原理可以证明,静电力对试验电荷所作的功与路径无关,仅由起点、终点的位置确定。若试验电荷在静电场中沿闭合路径移动一周,则静电力对它所作的功为零,这就是静电场的环路定理。电势表明静电场是保守场或势场,存在着一个可以用来描述静电场特性的,只与位置有关的标量函数。

电势_电势 -定理定律

在静电学里,电势(electricpotential)(又称为电位)定义为:处于电场中某个位置的单位电荷所具有的电势能。电势只有大小,没有方向,是标量,其数值不具有绝对意义,只具有相对意义。


电势

(1)单位正电荷由电场中某点A移到参考点O(即零势能点,一般取无限远处或者大地为零势能点)时电场力做的功与其所带电量的比值。所以ψA=WAO/q。在国际单位制中的单位是伏特(V)。

(2)电场中某点相对参考点O电势的差,叫该点的电势。

“电场中某点的电势在数值上等于单位正电荷在那一点所具有的电势能。”

公式:ε=qψ(其中ε为电势能,Q为电荷量,ψ为电势),即ψ=ε/q

在电场中,某点的电荷所具的电势能跟它的所带的电荷量之比是一个常数,它是一个与电荷本身无关的物理量,它与电荷存在与否无关,是由电场本身的性质决定的物理量。

电势也是只有大小,没有方向,也是标量。静电场的基本性质是它对放于其中的电荷有作用力,因此在静电场中移动电荷,静电场力要做功。但静电场中沿任意路径移动电荷一周回到原来的位置,电场力所做的功恒为零,即静电场力做功与路径无关,或静电场强的环路积分恒为零。

静电场的这一性质称为静电场的环路定理。根据静电场的这一性质可引入电势来描述电场,就好像在重力场中重力做功与路径无关,可引入重力势描述重力场一样。电场中某一点的电势定义为把单位正电荷从该点移动到电势为零的点,电场力所做的功。通常选择无限远点的电势为零,因此某点的电势就等于把单位正电荷从该点移动到无限远。电势的单位为V(伏),1V=1J/C(1焦/库)。静电场中电势相等的点构成一些曲面,这些曲面称为等势面。电力线总是与等势面正交,并指向电势降低的方向,因此静电场中等势面的分布就绘出了电场分布。电势虽然是引入描述电场的一个辅助量,但它是标量,运算比矢量运算简单,许多具体问题中往往先计算电势,再通过电势与场强的关系求出场强。电路问题中电势和电势压(即电压)是一个很有用的概念。电势是普遍描述电场的电磁势的特例。

电势_电势 -物理原理


电势梯度带电量q的电荷由电场中某点A移到参考点O(即零势能点,一般取无限远处或者大地为这个零势能点),电场力做功WAO(将这个电荷从A点移至零势能点电场力做的功)跟这个电荷的电量q比值叫(AO两点电势差)A点电势,电势也是只有大小,没有方向,也是标量。和地势一样,电势也具有相对意义,在具体应用中,常取标准位置的电势能为零,所以标准位置的电势也为零。电势只不过是和标准位置相比较得出的结果。我们常取地球为标准位置;在理论研究时,我们常取无限远处为标准位置,在习惯上,我们也常用“电场外”这样的说法来代替“零电势位置”。电势是一个相对量,其参考点是可以任意选取的。无论被选取的物体是不是带电,都可以被选取为标准位置-------零参考点。例如地球本身是带负电的,其电势相对于无穷远处约为8.2×108V。尽管如此,照样可以把地球作为零电势参考点,同时由于地球本身就是一个大导体,电容量很大,所以在这样的大导体上增减一些电荷,对它的电势改变影响不大。其电势比较稳定,所以,在一般的情况下,还都是选地球为零电势参考点。

电势的特点是:不管是正电荷的电场线还是负电荷的电场线,只要顺着电场线的方向总是电势减小的方向,逆着电场线总是电势增大的方向。所以同一电场线上,任意两点电势不相等。

正电荷电场中各点电势为正,远离正电荷,电势降低。

负电荷电场中各点电势为负,远离负电荷,电势增高。

电势_电势 -物理意义

(1)由电场中某点位置决定,反映电场能的性质。

(2)与检验电荷电量、电性无关。

(3)表示将1C正电荷移到参考点电场力做的功。

电势差与电势的关系:

∵WAB=WAO-WBO=qUAB

∴UAB=WAO/q-WBO/q=ψA-ψB

∴UAB=ψA-ψB

电场力做功:①公式:W=qU

②∵ U由电场中两点位置决定,∴W由q,U决定与路径无关,和重力做功一样,属于保守力做功。

③特点:电场力做功由移动电荷和电势差决定,与路径无关。

附电荷周围产生的静电场的电势差与电势的公式与推导:

一场源点荷为Q,在距Q为r的A点有一点电荷为q,求证:此A处电势φ=kQ/r

证明:设无穷远处电势为0,则在电场力的作用下,q从r处运动到无穷远,电场力做功为qU。

将A到无穷远这段距离无限等分最远处距离为r0,A 处为rn,(0,1,2,……n为下标)

kQq*(r(n-1)-rn)/rn^2+kQq*(r(n-2)-r(n-1))/r(n-1)^2+……+kQq*(r2-r3)/r3^2+kQq*(r1-r2)/r2^2+kQq*(r0-r1)/r1^2=qU

kQq*(r(n-1)-rn)/(rn*r(n-1))+kQq*(r(n-2)-r(n-1))/(r(n-1)*r(n-2))+……+kQq*(r2-r3)/(r3*r2)+kQq(r1-r2)/(r2*r1)+kQq*(r0-r1)/(r1*r0)=qU

因此,kQ/rn-kQ/r(n-1)+kQ/r(n-1)-kQ/r(n-2)+……+kQ/r3-kQ/r2+kQ/r2-kQ/r1+kQ/r1-kQ/r0=U

kQ/rn-kQ/r0=U

kQ/rn-0=φ-0

φ=kQ/rn,即φ=kQ/r。

电势_电势 -物理方法

(1)由电场中某点位置决定,反映电场能的性质。

(2)与检验电荷电量、电性无关。

(3)表示将1C正电荷从参考点移到零势点电场力做的功。

电荷周围产生的静电场的电势差与电势的公式与推导:

一场源点荷为Q,在距Q为r的A点有一点电荷为q,求证:此A处电势φ=kQ/r

证明:

我们取的是r(i+1)-r(i)=△r,△r→0

那么r(i+1)到r(i),也就是△r这一段内的库仑力可以看做常量F(r(i))=kQq/(r(i))^2

那么这一段内库仑力做功:

△W(i)≈F(r(i))・△r=kQq・△r/(r(i))^2≈kQq・△r/(r(i)・r(i+1))=

kQq・(r(i+1)-r(i))/(r(i)・r(i+1))=kQq・(1/r(i)-1/r(i+1))这样后再累加起来就是


∑△W(i)=W=kQq/r(1)-kQq/r(n)得到公式φ=kQ/r


等量同种点电荷电势分布:

(1)正点电荷连线上:中点电势最低,从中点向两侧电势逐渐升高;

(2)连线中垂线上:从中点向中垂线两侧电势降低,直至无限远处电势为零;

(3)负点电荷的情况正好相反。

等量异种点电荷电势分布:

(1)点电荷连线上:沿电场线方向,电势从正电荷到负电荷依次降低;

(2)连线中垂线上:中垂线上任意两点之间电势差为零,即中垂线上电势为零。

电势_电势 -电源的电动势

电源的电动势,是指非静电力把单位正电荷从电源的负极移动到正极(或者把单位负电荷从电源的正极推向负极)所做的功。电源的电动势与电流和电压是有关系的,具体可看下面对电流与电压的说明,若要知道它们之间的数量关系还需知道具体的电路参数(如电路中的电阻等)。

高斯定理求电势 电势 电势-定理定律,电势-物理原理

因为有了电动势,电荷在电源内部的能量提高了,处于电源正极的正电荷(或负极的负电荷)具有对电源以外的电路做功的能量。如果用一条可导电的支路将电源的两个电极进行连接,电荷在电源的作用下就能在导电支路中流动,电荷的定向流动称为电流。

电荷流动时,电荷所具有的能量在电路中释放,电路及电路中所连接的元件将吸收电荷的能量。经过能量吸收,电荷释放能量其本身所含的能量后变小,人们用电压降落来衡量电荷在电路中释放能量的能力大小。当电流流过电路时,将在电路的每一小段中产生一定的电压降落,用来表示电荷流过该小段释放(或该小段电路吸收)的电能的大小。电压降落简称电压。两点之间的电压是指单位正电荷在电源的作用下经过这两点时所做的功。

电势_电势 -研究领域

细胞膜电势:

细胞是生命活动的基本单位.生物体的每个细胞都被厚度约为(60~100)×10-10m的细胞膜所包围,细胞膜内、外都充满液体,在液体中都溶有一定量的电解质。细胞膜由两个分子厚度的被称为类脂双层的卵磷脂层所组成。卵磷脂分子为两亲分子,其疏水链向膜的中间,亲水部分伸向膜的内、外两侧,球形蛋白分子分布在膜中,有的蛋白分子一部分嵌在膜内,一部分在膜外,也有的蛋白分子横跨整个膜。这些膜蛋白在生物体的活性传递和许多化学反应中起催化作用,并充当离子透过膜的通道。细胞膜在生物体的细胞代谢和信息传递中起着关键的作用。

在细胞膜内外的电解质中,K+离子比Na+和Cl-离子更容易透过细胞膜,因此细胞膜两侧K+离子的浓度差最大。静止神经细胞内液体中K+离子的浓度是细胞外的35倍左右。为简单起见,不考虑Na+、Cl-和H2O透过细胞膜的情况,只考虑K+离子透过细胞膜。膜电势是膜两边离子有选择性地穿透膜而使两边浓度不等而引起的电位差,它是指膜两侧的平衡电势差。设用适当的装置,将细胞内、外液体组成以下电池:
Ag,AgCl|KCl(aq)|内液(β)|细胞膜|外液(α)|KCl(aq)|AgCl,Ag

由于细胞内液卢相中K+离子浓度比。相中的浓度大,所以K+离子倾向于由β相穿过膜向细胞膜外液α相扩散,致使α相一边产生净正电荷,而在β相一边产生负电荷。α相一边产生的正电荷会阻止K+进一步向α相扩散,而β相产生的负电荷会加速K+从α相向β相扩散,最后达到动态平衡,此时K+离子在α和β两相中的电化学势相等,由于K+离子从β相向α相转移,造成α相的电势高于β相。

在生物化学中,习惯于用下式表示:膜电势。

细胞膜电势的存在意味着细胞膜上有一双电层,相当于一些偶极分子分布在细胞表面。例如心脏的心肌收缩和松弛时,心肌细胞膜电势不断变化,因此心脏总的偶极矩以及心脏所产生的电场也在变化。心动电流图,即心电图就是测量人体表面几组对称点之间由于心脏偶极矩的变化所引起的电势差随时间的变化情况,从而判断心脏工作是否正常。类似的肌动电流图是监测肌肉电活性的情况,这对指导运动员训练有一定的帮助。脑电图是监测头皮上两点之间的电势差随时间的变化从而了解大脑神经细胞的电活性情况。实验表明,我们的思维以及通过视觉、听觉和触觉器官接受外界的感觉,所有这些过程都与细胞膜电势的变化有关,了解生命需要了解这些电势差是如何维持以及如何变化的,这个研究领域正越来越为人们重视。

电势_电势 -应用领域

超导结和耦合超导结:

(1)热噪声在超导结中引起的静电势的多次增加和多次减少:研究人员研究了在过阻尼和欠阻尼两种情况下、在考虑了热噪声和有交流信号和直流信号同时输入的情况下的超导结两端的静电势。研究表明,随着温度的增加(热噪声的强度和温度成正比),静电势会多次被增加和多次被减小(静电势多次被增加的峰值对应于静电势的共振激活现象)。另外,超导结两端的静电势还表现出(噪声引起的)热噪声加强稳定的现象。

(2)耦合超导结系统(或器件)中时空噪声的出现和其对输运的影响:在该研究中,研究人员首次发现了时空噪声可能出现在耦合超导结系统(一个超导量子干涉器件)中,并且时空噪声与电子对的波函数的相差的关联所引起的系统的对称破缺能够引起输运。通过对两个模型(一个高斯噪声模型和一个电报噪声模型)的研究,研究人员发现在所研究的耦合超导结系统中几率流总是负的并且随着热噪声强度的增加而会出现一个“井”。根据研究人员的研究结果,研究人员可以控制噪声使几率流处于有利于科研人员的实验要求的状态。比如,如果研究人员希望在实验中得到较大的负几率流时,研究人员可以采取下面的两个措施:a).在一定的环境扰动下,我们可以适当地调整温度使负几率流处于上面所提到的“井”的附近(热噪声的强度与温度成正比)以便于得到有利于我们实验要求的结果;b).在一定的温度下,研究人员们应当采取一定的措施来调节环境扰动以便使负几率流的绝对值尽可能地大。

(3)一个热-惯性“ratchet”超导量子干涉器件(耦合超导结)中的混沌噪声输运:研究了一个热-惯性“ratchets”超导量子干涉器件中在有周期信号的输入的情况下的混沌噪声输运。研究表明,通过控制温度和外部输入信号的强度,研究人员可以使输运的方向反号。当温度足够低时,研究人员很容易得到混沌输运;但当温度足够高时,输运主要是热噪声输运。

(4)环境扰动下的耦合超导结:研究人员在考虑了内部热涨落和外部环境扰动的情况下研究了一个SQUID[超导量子干涉器件(耦合超导结)],发现外部环境的扰动可在SQUID中引起输运,通过控制内部热涨落和外部环境的扰动之间的关联可使静电势反号;并发现随着系统内部温度的增加,电流―电压特性越来越接近于正常状态下的欧姆定律。

(5)热涨落和环境扰动的关联可在单个超导结中引起的静电势:它们却在国际上激起了大量科研工作者的研究兴趣。在相关论文中研究人员研究了外部环境的扰动所引起的噪声与内部热涨落的关联在超导结中所引起的静电势。研究表明,系统内部的热涨落和外部环境的扰动之间的关联可以引起对称破缺,从而在超导结中引起静电势。

电势_电势 -知名学者

伏打(AlessandroVlota,1745~1827),意大利物理学家。1745年2月18日生于科摩,成年后出于好奇,才去研究自然现象。1774年伏打担任科摩大学预科物理教授。[6]国际单位制中的电势、电势差和驱动电流的电动势的单位伏特,就是为纪念他而以他的姓氏命名。

电势_电势 -专用名词

电势能

a.电势能的定义:

和地球上物体由于受到重力作用能够做功而具有重力势能类比,在电场中带电物体受到电场力作用也具有做功本领,因此也具有能量,这种能量叫做电势能。
电势能是标量,用符号W表示,单位是J。

重力势能和重力场中物体质量和位置有关,与之类比电势能和电场中带电体的电荷量和位置有关。

b.(1)当电场力做正功时,电势能减少。

(2)当克服电场力做功时,电势能增加。

(3)电势能的变化量和电场力做功的绝对值相等。

电势差

a.电势差概念的建立:

在重力场中物体在重力作用下做功越多,则两点间高度差越大。

在电场中电荷在电场力作用下做功越多,则称这两点间“电势差”越大。从而建立了重力场中的高度差和电场中的电势差之间的类比关系。
考虑到重力场中有:hAB=WAB/mg,hAB表示重力场中两点高度差,WAB表示物体由A移到B重力做的功。

则hAB类比于电场中的电势差UAB,重力做功类比于电场力做功WAB,重力场中物体重力类比于电场中电荷带电量q,从而得出电势差的表达式:
UAB=WAB/q

电势差是标量,符号U,单位是V,1V=1J/C

b.电势差的计算问题:

(1)电势能除了与电场有关外,还跟放入的电荷有关,和重力势能类似。

(2)电势差则与放入的电荷无关,仅取决于电场本身性质,对于一个确定的电场来说,某两点间的电势差是不变的。

(3)电势差的计算是标量运算,计算时注意需代入正负号,计算中W与U的脚标要对应即:WAB=qUABWBA=qUBA。

  

爱华网本文地址 » http://www.413yy.cn/a/8104060103/167067.html

更多阅读

bzoj2322-梦想封印xor高斯消元 bzoj大视野

这道题第一眼看上去:跟bzoj2115那道xor高斯消元好像啊。复习了一遍那道题,然后还是不会做==于是各种无节操膜拜题解标程。这里确实是用到了2115的一些思想,那题做法:http://blog.sina.com.cn/s/blog_6e63f59e0101bklw.html那道题求的是x

高斯·奥特曼 艾斯奥特曼

编辑词条高斯·奥特曼目录出演播放日期剧情简介高斯·奥特曼形象解说特摄电视剧与电影资料剧集目录  高斯奥特曼  -日文原名: ウルトラマンコスモス  -英文名: ULTRAMAN COSMO

转 OpenCV编程案例:混合高斯模型CvGaussBGModel 使用案例

下面程序是使用混合高斯建模方法对目前进行检测的程序。运行时,需要传递视频文件的路径参数,或者连接摄像机,否则出错。selected from:http://www.opencv.org.cn/index.php/高斯背景建模http://baike.baidu.com/view/2663975.htm代码如

声明:《高斯定理求电势 电势 电势-定理定律,电势-物理原理》为网友风起人散灬分享!如侵犯到您的合法权益请联系我们删除