标量(scalar),亦称“无向量”。有些物理量,只具有数值大小,而没有方向,部分有正负之分。物理学中,标量(或作纯量)指在坐标变换下保持不变的物理量。用通俗的说法,标量是只有大小,没有方向的量。亦称“无向量”。有些物理量,只具有数值大小,而没有方向,部分有正负之分。这些量之间的运算遵循一般的代数法则,称做“标量”。如质量、密度、温度、功、能量、路程、速率、体积、时间、热量、电阻、功率、势能、引力势能、电势能等物理量。无论选取什么坐标系,标量的数值恒保持不变。矢量和标量的乘积仍为矢量。标量和标量的乘积仍为标量。矢量和矢量的乘积,可构成新的标量,也可构成新的矢量,构成标量的乘积叫标积;构成矢量的乘积叫矢积。如功、功率等的计算是采用两个矢量的标积。W=F・S,P=F・v。力矩、洛仑兹力等的计算是采用两个矢量的矢积。M=r×F,F=qvB。
标量_标量 -概述
亦称“无向量”。有些物理量,只具有数值大小,而没有方向。这些量之间的运算遵循一般的代数法则。这样的量叫做“标量”。如质量、密度、温度、功、能量、路程、速率、体积、时间、热量、电阻等物理量。无论选取什么坐标系,标量的数值恒保持不变。矢量和标量的乘积仍为矢量。矢量和矢量的乘积,可构成新的标量,也可构成新的矢量,构成标量的乘积叫标积;构成矢量的乘积叫矢积。如功、功率等的计算是采用两个矢量的标积。A=F?S,P=F?v。力矩、洛仑兹力等的计算是采用两个矢量的矢积。M=r×F,F=qv+B。
=======================================================================================================
矢量和标量的定义如下:(到大学物理中会详细研究)
(1)定义或解释:有些物理量,既要由数值大小(包括有关的单位),又要由方向才能完全确定。这些量之间的运算并不遵循一般的代数法则,而遵循特殊的运算法则。这样的量叫做物理矢量。有些物理量,只具有数值大小(包括有关的单位),而不具有方向性。这些量之间的运算遵循一般的代数法则。这样的量叫做物理标量。
(2)说明:①矢量之间的运算要遵循特殊的法则。矢量加法一般可用平行四边形法则。由平行四边形法则可推广至三角形法则、多边形法则或正交分解法等。矢量减法是矢量加法的逆运算,一个矢量减去另一个矢量,等于加上那个矢量的负矢量。A-B=A+(-B)。矢量的乘法。矢量和标量的乘积仍为矢量。矢量和矢量的乘积,可以构成新的标量,矢量间这样的乘积叫标积;也可构成新的矢量,矢量间这样的乘积叫矢积。例如,物理学中,功、功率等的计算是采用两个矢量的标积。W=F・S,P=F・v,物理学中,力矩、洛仑兹力等的计算是采用两个矢量的矢积。M=r×F,F=qv×B。②物理定律的矢量表达跟坐标的选择无关,矢量符号为表述物理定律提供了简单明了的形式,且使这些定律的推导简单化,因此矢量是学习物理学的有用工具。
标量_标量 -相关链接
数学