数学的一个基本的分支学科,研究对象是一般集合。集合论在数学中占有一个独特的地位,它的基本概念已渗透到数学的所有领域。 集合论或集论是研究集合(由一堆抽象物件构成的整体)的数学理论,包含了集合、元素和成员关系等最基本的数学概念。在大多数现代数学的公式化中,集合论提供了要如何描述数学物件的语言。集合论和逻辑与一阶逻辑共同构成了数学的公理化基础,以未定义的“集合”与“集合成员”等术语来形式化地建构数学物件。在朴素集合论中,集合被当做一堆物件构成的整体之类的自证概念。在公理化集合论中,集合和集合成员并不直接被定义,而是先规范可以描述其性质的一些公理。在此一想法之下,集合和集合成员是有如在欧式几何中的点和线,而不被直接定义。
集合论_集合论 -基础概念
主条目:集合 (数学)和集合代数
集合论是从一个物件o和集合A之间的二元关系开始:若o是A的元素,可表示为o ∈ A。由于集合也是一个物件,因此上述关系也可以用在集合和集合的关系。
另外一种二个集合之间的关系,称为包含关系。若集合A中的所有元素都是集合B中的元素,则称集合A为B的子集,符号为A ? B。例如{1,2} 是{1,2,3} 的子集,但{1,4} 就不是{1,2,3} 的子集。依照定义,任一个集合也是本身的子集,不考虑本身的子集称为真子集。集合A为集合B的真子集当且仅当集合A为集合B的子集,且集合B不是集合A的子集。
数的算术中有许多一元及二元运算,集合论也有许多针对集合的一元及二元运算:
集合A和B的并集,符号为A ∪ B,是在至少在集合A或B中出现的元素,集合{1,2,3} 和集合{2, 3, 4} 的联集为集合{1, 2, 3, 4} 。
集合A和B的交集,符号为A ∩ B,是同时在集合A及B中出现的元素,集合{1,2,3} 和集合{2, 3, 4} 的交集为集合{2, 3} 。
集合U和A的相对差集,符号为U A,是在集合U中,但不在集合A中的所有元素,相对差集{1,2,3} {2,3,4} 为{1} ,而相对差集{2,3,4} {1,2,3} 为{4} 。当集合A是集合U的子集时,相对差集U A也称为集合A在集合U中的补集。若是研究文氏图,集合U为全集时,且可以借由上下文找到全集定义时,会使用A来代替U A。
集合A和B的对称差,符号为A △ B或A