细胞骨架微管 细胞骨架 细胞骨架-概述,细胞骨架-微管

细胞骨架(cytoskeleton)是真核细胞中由蛋白质聚合而成的三维的纤维状网架体系。细胞骨架包括微丝、微管和中间纤维。细胞骨架在细胞分裂、细胞生长、细胞物质运输、细胞壁合成等等许多生命活动中都具有非常重要的作用。

细胞骨架_细胞骨架 -概述


细胞骨架

细胞骨架(cytoskeleton)是指真核细胞中的蛋白纤维网络结构。发现较晚,主要是因为一般电镜制样采用低温(0-4℃)固定,而细胞骨架会在低温下解聚。直到20世纪60年代后,采用戊二醛常温固定,才逐渐认识到细胞骨架的客观存在。真核细胞借以维持其基本形态的重要结构,被形象地称为细胞骨架,它通常也被认为是广义上细胞器的一种。细胞骨架不仅在维持细胞形态,承受外力、保持细胞内部结构的有序性方面起重要作用,而且还参与许多重要的生命活动,如:在细胞分裂中细胞骨架牵引染色体分离,在细胞物质运输中,各类小泡和细胞器可沿着细胞骨架定向转运;在肌肉细胞中,细胞骨架和它的结合蛋白组成动力系统;在白细胞(白血球)的迁移、精子的游动、神经细胞轴突和树突的伸展等方面都与细胞骨架有关。另外,在植物细胞中细胞骨架指导细胞壁的合成。

细胞骨架由微丝(microfilament)、微管(microtubule)和中间纤维(intemediatefilament)构成。微丝确定细胞表面特征,使细胞能够运动和收缩。微管确定膜性细胞器(membrane-enclosedorganelle)的位置和作为膜泡运输的导轨。中间纤维使细胞具有张力和抗剪切力。

细胞骨架微管 细胞骨架 细胞骨架-概述,细胞骨架-微管

微丝、微管和中间纤维位于细胞质中,又称胞质骨架,它们均由单体蛋白以较弱的非共价键结合在一起,构成纤维型多聚体,很容易进行组装和去组装,这正是实现其功能所必需的特点。

广义的细胞骨架还包括核骨架(nucleoskeleton)、核纤层(nuclearlamina)和细胞外基质(extracellularmatrix),形成贯穿于细胞核、细胞质、细胞外的一体化网络结构。

细胞骨架_细胞骨架 -微管


细胞骨架

微管可在所有哺乳类动物细胞中存在,除了红细胞(红血球)外,所有微管均由约55kD的α及β微管蛋白(tubulin)组成。它们正常时以β二聚体形式存在,并以头尾相连的方式聚合,形成微管蛋白原纤维(protofilament),一般由13根这样的原纤维构成一个中空的微管,直径22~25nm。少数变异的微管如线虫等所有的则有其他数目的原纤维。微管确定膜性细胞器(membrane-enclosedorganelle)的位置和作为膜泡运输的导轨。微管是细胞骨架的架构主干,并也是某些胞器的主体,例如中心粒(centriole)就是由9组3联微管组成的构造,而真核生物的纤毛(cilium)与鞭毛(flagellum)也是由以微管为9+2结构,即由9个二联微管和一对中央微管构成,其中二联微管由AB两个管组成,A管由13条原纤维组成,B管由10条原纤维组成,两者共享5条。


细胞骨架的主要功能

A管对着相邻的B管伸出两条动力蛋白臂,并向鞭毛中央发出一条辐。基体的微管组成为9+0,并且二联微管为三联微管所取代,结构类似于中心粒。组成的轴丝(axoneme)为主体。从各种组织中提纯微管蛋白可以发现还存在一些其他蛋白成分(5%-20%),称之谓微管相关蛋白(microtubeassociatedproteinsMAPs)。这些蛋白具有组织特异性,表现出从相同αβ二聚体聚合形成的微管具有独特的性质,已从人类不同组织中发现了多种α及β微管蛋白,并追踪微管基因表现出部分基因家族,某些基因被认为是编码独特的微管蛋白。微管形成的有些结构是比较稳定的,是由于微管结合蛋白的作用和酶修饰的原因。如神经细胞轴突、纤毛和鞭中的微管纤维。大多数微管纤维处于动态的聚合和灾变(一种突然的,迅速的,一般不可逆转的分解)状态,这是实现其功能所必需的性质(如纺锤体)。

与秋水仙素(colchicine)结合的微管蛋白可加合到微管上,并阻止其他微管蛋白单体继续添加,进而破坏纺锤体的结构,长春花碱具有类似的功能。紫杉酚(taxol),能促进微管的聚合,并使已形成的微管稳定,然而这种稳定性会破坏微管的正常功能。这些药物可以利用破坏微管功能以阻止细胞分裂,成为癌症治疗的新希望。在人类至少发现两种明显区别的α-微管蛋白及三种明显区别的β-微管基因,它们产生具有特定功能的微管蛋白mRNA,由于这些编码在结构组分上十分近似蛋白质分子,在不同组织存在多少特异性的具有差异表达的微管蛋白亚型,尚待深入研究。除了α-与β-微管蛋白有编码相似的不同变异型,近几年来又发现了多种编码差异更大的新的微管蛋白,形成不同的基因家族。

其中gamma微管蛋白位于细胞内的微管组织中心(microtubuleorganizingcenter,MTOC),是用以提供α及β微管蛋白进行聚合反应形成微管的起始核心。而delta与epsilon则被认为与中心体(centrosome)的结构与形成有关。其他尚有eta,zeta,theta等等多种变异,不过通常仅存在少数几种真核单细胞生物如原虫或纤毛虫里,可能跟这些生物独特的结构与生理习性有关,进一步详情仍待研究。

细胞骨架_细胞骨架 -微丝


细胞骨架微丝(microfilament)也普遍存在于所有真核细胞中,是一个实心状的纤维,一般细胞中含量约占细胞内总蛋白质的1%-2%,但在活动较强的细胞中可占20%-30%。在一般细胞主要分布于细胞的表面,直接影响细胞的形状。微丝具有多种功能,在不同细胞的表现不同,在肌细胞组成粗肌丝、细肌丝,可以收缩(收缩蛋白),在非肌细胞中主要起支撑作用、非肌性运动和信息传导作用。微丝主要由肌动蛋白(actin)构成,和肌球蛋白(myosin,一种???分子马达蛋白)一起作用,使细胞运动。它们参与细胞的变形虫运动、植物细胞的细胞质流动与肌肉细胞的收缩:植物细胞的细胞质流动:微丝中的actin(肌动蛋白)与myosin(肌球蛋白)在细胞质形成三维的网络体系。actin位于外质,myosin位于内质。myosin连结著细胞质颗粒,由ATP供给能量,myosin与细胞质颗粒的结合体沿着actinfilament滑动,从而带动整个细胞质的环流。变形虫运动(amoeboidmovememt,阿米巴运动):肌肉细胞的收缩:如同微管蛋白,肌动蛋白的基因组成一个超家族,并组成多种极为相似的结构。例如,各种肌肉细胞有不同的机动蛋白:①骨骼肌的条纹纤维;②心肌的条纹纤维;③血管壁的平滑肌;④胃肠道壁的平滑肌。它们在氨基酸组分上有微小的差异(大约在400个氨基酸残基序列中有4-6个变异),在肌肉与非肌细胞中都还存在β及γ肌动蛋白,它们与具有横纹的α肌动蛋白可有25个氨基酸的差异。G-肌动蛋白单体(含ATP)可聚合为呈纤维状的F-肌动蛋白(含ADP),它们可由Mg2+及高浓度的K+或Na+诱导而聚合,聚合后ATP水解为ADP及C-肌动蛋白ADP单体,组成F-肌动蛋白。在骨骼肌的细肌丝(thinfilament,由肌动蛋白构成)与粗肌丝(thickfilament,由肌球蛋白构成)相互作用而使肌肉收缩(肌球蛋白可以起作肌动蛋白激活的ATPase的作用)。肌球蛋白也存在于哺乳动物的非肌细胞中(但以非聚合状态存在)。

细胞骨架_细胞骨架 -中间纤维


细胞骨架

细胞骨架的第三种纤维结构称中等纤维或中间纤维(intermediatefilament,IF),又称中间丝,为中空的骨状结构,直径介于微管和微丝之间,其化学组成比较复杂,在不同细胞中,成分变化较大。中间纤维使细胞具有张力和抗剪切力。中间纤维有共同的基本结构,即构建成一个中央α螺旋杆状区,

两侧则是大小和化学组成不同的端区。端区的多样性决定了中间纤维外形和性质的差异和特异性。以上这些结构单元并非是一成不变的,而是随细胞的生命活动而呈现高度的动态性,它们均由单体蛋白以较弱的非共价键结合在一起,构成纤维型多聚体,很容易进行组装和去组装,这正是实现其功能所必需的特点。

细胞骨架_细胞骨架 -其他蛋白


细胞骨架

不仅如此,细胞骨架还包含有很多结构单元的附属蛋白质,比如:分子马达(molecularmotors):动力蛋白(dynein),kinesin,myosin结合蛋白:vinculin,cofilin,tropomyosin等等。

广义的细胞骨架还包括核骨架(nucleoskeleton)、核纤层(nuclearlamina)和细胞外基质(extracellularmatrix),形成贯穿于细胞核、细胞质、细胞外的一体化网络结构。

  

爱华网本文地址 » http://www.413yy.cn/a/8104030103/157246.html

更多阅读

左右衣襟:细数那些左衽现象

貞觀朔探花11“微管仲,吾其被发左衽矣。”是孔子一句比较有名的话。衽,本义衣襟,左衽是指衣襟在胸前相交后,右衣襟在上压住左衣襟,即衣襟由右向左掩,反之为右衽。  图片来自:貞觀朔的百度相册抢沙发 (9)回复1楼2013-05-30 00:00

流式细胞仪的功能和临床应用 流式细胞仪的临床应用

流式细胞仪最大的贡献在于促进了免疫学基础研究和临床诊断。目前流式细胞术已被广泛用于细胞生物学、免疫学、肿瘤学、血液学、病理学、遗传学和临床检验等多学科领域的基础和临床研究。1.流式细胞仪的功能(1)细胞参量分析包括细胞大小

质粒载体 质粒进入细胞的原理

基因克隆的质粒载体  在大肠杆菌的各种菌体中找到了许多种不同类型的质粒,其中已经作了比较详尽研究的主要有F质粒、R质粒和Col质粒。  ①F质粒 又叫F因子或性质粒(sexplasmid)。它们能够使寄主染色体上的基因和F质粒一道转移到原

声明:《细胞骨架微管 细胞骨架 细胞骨架-概述,细胞骨架-微管》为网友爱坚强分享!如侵犯到您的合法权益请联系我们删除