差分方程又称递推关系式,是含有未知函数及其差分,但不含有导数的方程。 满足该方程的函数称为差分方程的解。差分方程是微分方程的离散化。
差分方程_差分方程 -简介
在数学上,递推关系(recurrence relation),也就是差分方程(difference equation),是一种递推地定义一个序列的方程式:序列的每一项目是定义为前一项的函数。某些简单定义的递推关系式可能会表现出非常复杂的(混沌的)性质,他们属于数学中的非线性分析领域。
所谓解一个递推关系式,也就是求其解析解,即关于n的非递归函数。
差分方程_差分方程 -意义性质
意义
差分方程是微分方程的离散化。一个微分方程不一定可以解出精确的解,把它变成差分方程,就可以求出近似的解来。
比如 dy+y*dx=0,y(0)=1 是一个微分方程, x取值[0,1]
(注:解为y(x)=e^(-x));
要实现微分方程的离散化,可以把x的区间分割为许多小区间 [0,1/n],[1/n,2/n],...[(n-1)/n,1]
差分方程
这样上述微分方程可以离散化为:y((k+1)/n)-y(k/n)+y(k/n)*(1/n)=0, k=0,1,2,...,n-1 (n 个离散方程组)
利用y(0)=1的条件,以及上面的差分方程,就可以计算出 y(k/n) 的近似值了。
§1 基本理论1. 差分
差分方程
2. 任意数列{xn },定义差分算子Δ如下:
Δxn=xn+1-xn
对新数列再应用差分算子,有
Δ2xn=Δ(Δkxn).
性质
性质1 Δk(xn+yn)=Δkxn+Δkyn
性质2 Δk(cxn)=cΔkxn
性质3 Δkxn=∑(-1)jCjkXn+k-j
性质4 数列的通项为n的无限次可导函数,对任意k>=1,存在η,有 Δkxn=f(k)(η)
差分方程
定义8.1 方程关于数列的k阶差分方程:
xn-a1xn-1-a2xn-2-……akxn-k=b (n=k,k+1,……)
其中a1,a2,------ak 为常数, ak≠0. 若b=0,则该方程是齐次方程
关于λ 的代数方程
λk-a1λk-1-------ak-1λ-ak=0
为对应的特征方程,根为特征值。
差分方程_差分方程 -例题
1. 实验内容与练习
2.1 差分
例1 Xn={n3},求各阶差分数列:
xn △xn △2xn △3xn △4xn
1 7 12 6 0
8 19 18 6 0
27 37 24 6 0
64 61 30 6
125 91 36
216 127
343
可见,{n3},三阶差分数列为常数数列,四阶为0。
练习1 对{1},{n},{n2},{n4},{n5},分别求各阶差分数列。
练习2 {C0n-1}{C1n-1}{C2n-1},{C4n-1},分别求各阶差分数列.
{Xn}的通项为n的三次函数,
Xn=a3n3+a2n2+a1n+a0
证明它为常数数列。
证明 由Xn=a3n3+a2n2+a1n+a0可直接计算。
定理8,1 若数列的通项是关于n 的k次多项式,则 k 阶差分数列为非零数列,k+1阶差分数列为0。
练习3 证明定理8.1。
定理8.2 若{Xn}的 k 阶插分为非零常数列,则{Xn}是 n的 k次多项式,
练习4 根据差分的性质证明定理8。2
例2。求∑i3
例4
解 设Sn=∑i3 表
Sn △Sn △2Sn △3Sn △4Sn △5Sn
18191860
927372460
3664613060
100125913660
22521612742
441343169
784512
1296
设Sn=a4n4+a3n3+a2n2+a1n+a0,s1=1,s2=9,s3=36,s4=100,s5=225,得
a0=0,a1=0,a2=1/4,a3=1/2,a4=1/4.
所以, Sn=(1/4)n4+(1/2)n3+(1/4)n2.
练习 {Xn}的通项Xn为n的k次多项式,证明∑xi为n的 k+1次多项式;求 ∑i4.
由练习 2 {Crn-1}可得。
2.2差分方程
对于一个差分方程,如果能找出这样的数列通项,将它带入差分方程后,该方程成为恒等式,这个通项叫做差分方程的解。
例3 对差分方程 xn-5xn-1+6xn-2=0,可直接验证xn=c13n+c22n是该方程的解。
例3中的解中含有任意常数,且任意常数的个数与差分方程的阶数相同。这样的解叫做差分方程的通解。
若k阶差分方程给定了数列前k项的取值,则可以确定通解的任意常数,得到差分
的特解。
例4对差分方程xn-5xn-1+6xn-2=0,若已知x1=1,x2=5,则可以得到该差分方程的特解为xn=3n-2n.
我们首先研究齐次线性差分方程的求解。
xn=rxn-1
对一阶差分方程
x1=a
显然有xn=arn-1。因此,若数列满足一阶差分方程,则该数列为一个等比数列。
例5 求Fibonacci数列{Fn}的通项,其中F1=1,F2=1,Fn=Fn-1+Fn-2.
Fibonacci数列的前几项为:1,1,2,3,5,8,13,21,34,55,89,…。该数列有着非常广泛的应用。
Fibonacci数列所满足的差分方程为 Fn-Fn-1-Fn-2=0,
其特征方程为 λ2-λ-1=0
其根为λ1=,λ2= .利用λ1λ2可将差分方程写为
Fn-(λ1+λ2)Fn-1+λ1λ2Fn-2=0,
即Fn-λ1Fn-1=λ2(Fn-1-λ1Fn-2)
数列{Fn-λ1Fn-1}满足一个一阶差分方程.显然 ( )
同理可得 ( )
由以上两式可解出 的通项。
练习9 证明若数列{ }满足二阶差分方程 ,其特征方程由两个不相等的根 ,则 为该差分方程的两个特解。从而其通解为。
由练习9,若二阶差分方程的特征方程有两个不相等的根,可写出其通解的一般性式。再由 的值可解出其中的系数,从而写出差分方程的特解。
练习10 具体求出 Fibonacci数列的通项,并证明。那么,若二阶线性齐次差分方程有两个相等的根,其解有如何来求呢?
设二阶线性齐次差分方程的特征方程有两个相等的根 ,则差分方程可写为。差分方程的两边同时除以 ,有。设,则 (n>=3)。由于该式在 n>=3式均成立,我们将它改写为 (n>=1)。(8.2)
方程(8.2)的左边是 的二阶差分,从而有,于是 是n的一次函数,设为 则有。上是即为差分方程的通解。
练习11 证明:若数列{ } 所满足的三阶差分方程的特征方程由三个相等的根 ,则差分方程的通解为。
一般的,设 ・・・,为差分方程的特征方程所有不同的解,其重数分别为 ・・・, ,则差分方程对应于其中的根 (i=1,2,・・・,l)的特解 ・・・。
对于一般的k阶齐次线性差分方程,我们可以通过其特征方程得到上述形式的k个特解,进而得到差分方程的通解。
练习12 若数列{ } 满足差分方程
且 求{ }的通项。
例6 若实系数差分方程的根为虚数,则其解也是用虚数表示的,这给讨论问题带来不便。差分方程
xn-2xn-1+4xn-2=0
的特征值为 i.若x1=1,x2=3,由下面的程序易求出其特解为:
xn=( )(1+ i)n+(- )(1- i)n
Clear[x1,x2,c1,c2,l1,l2,solution];
x1=1;x2=3;
solution=Solve[1^2-2l+4==0,1];
l1=l/.solution[[1,1]];
l2=l/.solution[[2,1]];
c=Solve[ {c1*l1+c2*l2==x1,c1*l1^2+c2*l2^2==x2},{c1,c2}];
c1=Simplify[ Re[c1]]+Simplify]*I;
c2=Simplify[Re[c2]]+Simplify]*I;
Print[“xn=(“,c1,”)(“,l1,”)^n+(“,c2,”)(“,l2,”)^n”]
解的形式相当复杂,是否可以将它们用实数表示呢?
设 =rei,则 =re,我们可将(8.4)中的表达式改写为
xn=re (2e )n+re (2e )n
=r
=2r Cos( )
=(2rCos )
=
可以看出,通项可以写成 的形式.那么, 与 是不是差分方程的特解呢?
练习13 验证 与 是差分方程(8.3)的特解.
对于差分方程(8.3),我们找出了它的两个实型的特解,从而可以将通解表示成实数的形式.这一方法对于一般的方程也是成立的.
练习14 设 的两个特征值为 .证明该差分方程的通解可表示为 .
练习 15 用实数表示差分方程 的特解.
上次我们讨论了其次线性差分方程的求解方法.那么,非齐次线性差分方程是否可以化为齐次线性差分方程呢