北斗卫星导航系统 北斗卫星导航系统 北斗卫星导航系统-系统构成,北斗卫星导航系统

中国北斗卫星导航系统(BeiDou Navigation Satellite System,BDS)是中国自行研制的全球卫星导航系统。是继美国全球定位系统(GPS)、俄罗斯格洛纳斯卫星导航系统(GLONASS)之后第三个成熟的卫星导航系统。北斗卫星导航系统(BDS)和美国GPS、俄罗斯GLONASS、欧盟GALILEO,是联合国卫星导航委员会已认定的供应商。北斗卫星导航系统由空间段、地面段和用户段三部分组成,可在全球范围内全天候、全天时为各类用户提供高精度、高可靠定位、导航、授时服务,并具短报文通信能力,已经初步具备区域导航、定位和授时能力,定位精度10米,测速精度0.2米/秒,授时精度10纳秒。2012年12月27日,北斗系统空间信号接口控制文件正式版1.0正式公布,北斗导航业务正式对亚太地区提供无源定位、导航、授时服务。2013年12月27日,北斗卫星导航系统正式提供区域服务一周年新闻发布会在国务院新闻办公室新闻发布厅召开,正式发布了《北斗系统公开服务性能规范(1.0版)》和《北斗系统空间信号接口控制文件(2.0版)》两个系统文件。2014年11月23日,国际海事组织海上安全委员会审议通过了对北斗卫星导航系统认可的航行安全通函,这标志着北斗卫星导航系统正式成为全球无线电导航系统的组成部分,取得面向海事应用的国际合法地位。中国的卫星导航系统已获得国际海事组织的认可。

北斗卫星导航系统图_北斗卫星导航系统 -系统构成

北斗卫星导航系统空间段由5颗静止轨道卫星和30颗非静止轨道卫星组成,中国2012年左右, “北斗”系统复盖亚太地区,2020年左右复盖全球。中国正在实施北斗卫星导航系统建设,已成功发射16颗北斗导航卫星。根据系统建设总体规划,2012年左右,系统将首先具备复盖亚太地区的定位、导航和授时以及短报文通信服务能力。2020年左右,建成覆盖全球的北斗卫星导航系统。

北斗卫星发射列表发射时间火箭卫星编号卫星类型发射地点2000年10月31日北斗-1A北斗1号西昌2000年12月21日北斗-1B2003年5月25日北斗-1C2007年2月3日北斗-1D2007年4月14日04时11分长征三号甲第一颗北斗导航卫星(M1)北斗2号2009年4月15日长征三号丙第二颗北斗导航卫星(G2)2010年1月17日第三颗北斗导航卫星(G1)2010年6月2日第四颗北斗导航卫星(G3)2010年8月1日05时30分长征三号甲第五颗北斗导航卫星(I1)2010年11月1日00时26分长征三号丙第六颗北斗导航卫星(G4)2010年12月18日04时20分长征三号甲第七颗北斗导航卫星(I2)2011年4月10日04时47分第八颗北斗导航卫星(I3)2011年7月27日05时44分第九颗北斗导航卫星(I4)2011年12月2日05时07分第十颗北斗导航卫星(I5)2012年2月25日0时12分长征三号丙第十一颗北斗导航卫星2012年4月30日4时50分长征三号乙第十二、第十三颗北斗导航系统组网卫星(“一箭双星”)2012年9月19日3时10分长征三号乙第十四、十五颗北斗导航系统组网卫星“一箭双星”)2012年10月25日23时33分长征三号丙第十六颗北斗导航卫星

卫星组成

发射日期发射火箭卫星轨道类别运行状况备注2000.10.31CZ-3A Y5北斗-1A废弃卫星轨道停止工作北斗一号2000.12.21CZ-3A Y6北斗-1B废弃卫星轨道停止工作2003.5.25CZ-3A Y7北斗-1C地球静止轨道 85.3°E正常2007.2.3CZ-3A Y12北斗-1D废弃卫星轨道失效2007.4.14CZ-3A Y13北斗-M1中地球轨道~21500km正常,测试星北斗二号2009.4.15CZ-3C Y3北斗-G235594 x 36036 km 漂移失效2010.1.17CZ-3C Y2北斗-G1地球静止轨道 140°E正常2010.6.2CZ-3C Y4北斗-G3地球静止轨道 84°E正常2010.8.1CZ-3A Y16北斗-I1倾斜地球同步轨道倾角55°正常2010.11.1CZ-3C Y5北斗-G4地球静止轨道 160°E正常2010.12.18CZ-3A Y18北斗-I2倾斜地球同步轨道 倾角55°正常2011.4.10CZ-3A Y19北斗-I3倾斜地球同步轨道 倾角55°正常2011.7.27CZ-3A Y17北斗-I4倾斜地球同步轨道 倾角55°正常2011.12.2CZ-3A Y23北斗-I5倾斜地球同步轨道 倾角55°正常2012.2.25CZ-3C Y6北斗-G5地球静止轨道 58.5°E正常2012.4.30CZ-3B Y14北斗-M3中地球轨道~21500km正常2012.4.30CZ-3B Y14北斗-M4中地球轨道~21332km正常2012.9.19CZ-3B Y15北斗-M5中地球轨道~21332km正常2012.9.19CZ-3B Y15北斗-M6中地球轨道~21332km正常2012.10.25CZ-3C Y北斗-G6地球静止轨道 110.5°E

星座构成


北斗卫星导航系统

北斗卫星导航系统由空间段计划由35颗卫星组成,包括5颗静止轨道卫星、27颗中地球轨道卫星、3颗倾斜同步轨道卫星。5颗静止轨道卫星定点位置为东经58.75°、80°、110.5°、140°、160°,中地球轨道卫星运行在3个轨道面上,轨道面之间为相隔120°均匀分布。至2012年底北斗亚太区域导航正式开通时,已为正式系统在西昌卫星发射中心发射了16颗卫星,其中14颗组网并提供服务,分别为5颗静止轨道卫星、5颗倾斜地球同步轨道卫星(均在倾角55°的轨道面上),4颗中地球轨道卫星(均在倾角55°的轨道面上)。

序号卫星发射日期火箭运行轨道使用状况状态1北斗-M12007年04月14日长征三号甲中地球轨道,高度21559公里,倾角56.8°试验星未使用M12北斗-G22009年04月15日长征三号丙有误差的地球静止轨道,高度36027公里,倾角2.2°失控未使用G23北斗-G12010年01月17日长征三号丙地球静止轨道140.0°E,高度35807公里,倾角1.6°使用中G14北斗-G32010年06月02日长征三号丙地球静止轨道110.6°E,高度35809公里,倾角1.3°使用中G35北斗-IGSO12010年08月01日长征三号甲倾斜地球同步轨道,高度35916公里,倾角54.6°使用中IGSO16北斗-G42010年11月01日长征三号丙地球静止轨道160.0°E,高度35815公里,倾角0.6°使用中G47北斗-IGSO22010年12月18日长征三号甲倾斜地球同步轨道,高度35883公里, 倾角54.8°使用中IGSO28北斗-IGSO32011年04月10日长征三号甲倾斜地球同步轨道,高度35911公里, 倾角55.9°使用中IGSO39北斗-IGSO42011年07月27日长征三号甲倾斜地球同步轨道,高度35879公里, 倾角54.9°使用中IGSO410北斗-IGSO52011年12月02日长征三号甲倾斜地球同步轨道,高度35880公里, 倾角54.9°使用中IGSO511北斗-G52012年02月25日长征三号丙地球静止轨道58.7°E,高度35801公里,倾角1.4°使用中G512北斗-M32012年04月30日长征三号乙中地球轨道,高度21607公里,倾角55.3°使用中M313北斗-M42012年04月30日长征三号乙中地球轨道,高度21617公里,倾角55.2°使用中M414北斗-M52012年09月19日长征三号乙中地球轨道 ,高度21597公里,倾角55.0°使用中M515北斗-M62012年09月19日长征三号乙中地球轨道,高度21576公里,倾角55.1°使用中M616北斗-G62012年10月25日长征三号丙地球静止轨道80.2°E,高度35803公里,倾角1.7°使用中G6

北斗卫星导航系统图_北斗卫星导航系统 -复盖范围


北斗卫星导航系统

北斗导航系统是复盖中国本土的区域导航系统,复盖范围东经约70°~140°,北纬5°~55°。北斗卫星系统已经对东南亚实现全复盖。

北斗卫星导航系统图_北斗卫星导航系统 -定位原理

35颗卫星在离地面2万多千米的高空上,以固定的周期环绕地球运行,使得在任意时刻,在地面上的任意一点都可以同时观测到4颗以上的卫星。

由于卫星的位置精确可知,在接收机对卫星观测中,我们可得到卫星到接收机的距离,利用三维坐标中的距离公式,利用3颗卫星,就可以组成3个方程式,解出观测点的位置(X,Y,Z)。考虑到卫星的时钟与接收机时钟之间的误差,实际上有4个未知数,X、Y、Z和钟差,因而需要引入第4颗卫星,形成4个方程式进行求解,从而得到观测点的经纬度和高程。

事实上,接收机往往可以锁住4颗以上的卫星,这时,接收机可按卫星的星座分布分成若干组,每组4颗,然后通过算法挑选出误差最小的一组用作定位,从而提高精度。

卫星定位实施的是“到达时间差”(时延)的概念:利用每一颗卫星的精确位置和连续发送的星上原子钟生成的导航信息获得从卫星至接收机的到达时间差。

卫星在空中连续发送带有时间和位置信息的无线电信号,供接收机接收。由于传输的距离因素,接收机接收到信号的时刻要比卫星发送信号的时刻延迟,通常称之为时延,因此,也可以通过时延来确定距离。卫星和接收机同时产生同样的伪随机码,一旦两个码实现时间同步,接收机便能测定时延;将时延乘上光速,便能得到距离。

每颗卫星上的计算机和导航信息发生器非常精确地了解其轨道位置和系统时间,而全球监测站网保持连续跟踪。

卫星导航原理

踪卫星的轨道位置和系统时间。位于地面的主控站与其运控段一起,至少每天一次对每颗卫星注入校正数据。注入数据包括:星座中每颗卫星的轨道位置测定和星上时钟的校正。这些校正数据是在复杂模型的基础上算出的,可在几个星期内保持有效。

卫星导航系统时间是由每颗卫星上原子钟的铯和铷原子频标保持的。这些星钟一般来讲精确到世界协调时(UTC)的几纳秒以内,UTC是由美国海军观象台的“主钟”保持的,每台主钟的稳定性为若干个10^-13秒。卫星早期采用两部铯频标和两部铷频标,后来逐步改变为更多地采用铷频标。通常,在任一指定时间内,每颗卫星上只有一台频标在工作。

卫星导航原理:卫星至用户间的距离测量是基于卫星信号的发射时间与到达接收机的时间之差,称为伪距。为了计算用户的三维位置和接收机时钟偏差,伪距测量要求至少接收来自4颗卫星的信号。

由于卫星运行轨道、卫星时钟存在误差,大气对流层、电离层对信号的影响,使得民用的定位精度只有数十米量级。为提高定位精度,普遍采用差分定位技术(如DGPS、DGNSS),建立地面基准站 (差分台)进行卫星观测,利用已知的基准站精确坐标,与观测值进行比较,从而得出一修正数,并对外发布。接收机收到该修正数后,与自身的观测值进行比较,消去大部分误差,得到一个比较准确的位置。实验表明,利用差分定位技术,定位精度可提高到米级。

北斗卫星导航系统图_北斗卫星导航系统 -系统功能

四大功能


北斗卫星导航系统

短报文通信:北斗系统用户终端具有双向报文通信功能,用户可以一次传送40-60个汉字的短报文信息。

可以达到一次传送达120个汉字的信息。在远洋航行中有重要的应用价值。

精密授时:北斗系统具有精密授时功能,可向用户提供20ns-100ns时间同步精度。

定位精度:水平精度100米(1σ),设立标校站之后为20米(类似差分状态)。工作频率:2491.75MHz。

系统容纳的最大用户数:540000户/小时。

军用功能


北斗卫星导航系统

“北斗”卫星导航定位系统的军事功能与GPS类似,如:运动目标的定位导航;为缩短反应时间的武器载具发射位置的快速定位;人员搜救、水上排雷的定位需求等。

这项功能用在军事上,意味着可主动进行各级部队的定位,也就是说大陆各级部队一旦配备“北斗”卫星导航定位系统,除了可供自身定位导航外,高层指挥部也可随时通过“北斗”系统掌握部队位置,并传递相关命令,对任务的执行有相当大的助益。换言之,大陆可利用“北斗”卫星导航定位系统执行部队指挥与管制及战场管理。

民用功能

个人位置服务

当你进入不熟悉的地方时,你可以使用装有北斗卫星导航接收芯片的手机或车载卫星导航装置找到你要走的路线。

北斗卫星导航系统示意图

气象应用

北斗导航卫星气象应用的开展,可以促进中国天气分析和数值天气预报、气候变化监测和预测,也可以提高空间天气预警业务水平,提升中国气象防灾减灾的能力。

除此之外,北斗导航卫星系统的气象应用对推动北斗导航卫星创新应用和产业拓展也具有重要的影响。

道路交通管理

卫星导航将有利于减缓交通阻塞,提升道路交通管理水平。通过在车辆上安装卫星导航接收机和数据发射机,车辆的位置信息就能在几秒钟内自动转发到中心站。这些位置信息可用于道路交通管理。

铁路智能交通


北斗卫星导航系统

卫星导航将促进传统运输方式实现升级与转型。例如,在铁路运输领域,通过安装卫星导航终端设备,可极大缩短列车行驶间隔时间,降低运输成本,有效提高运输效率。未来,北斗卫星导航系统将提供

高可靠、高精度的定位、测速、授时服务,促进铁路交通的现代化,实现传统调度向智能交通管理的转型。

海运和水运

海运和水运是全世界最广泛的运输方式之一,也是卫星导航最早应用的领域之一。在世界各大洋和江河湖泊行驶的各类船舶大多都安装了卫星导航终端设备,使海上和水路运输更为高效和安全。北斗卫星导航系统将在任何天气条件下,为水上航行船舶提供导航定位和安全保障。同时,北斗卫星导航系统特有的短报文通信功能将支持各种新型服务的开发。

北斗卫星定位系统示意图

航空运输

当飞机在机场跑道着陆时,最基本的要求是确保飞机相互间的安全距离。利用卫星导航精确定位与测速的优势,可实时确定飞机的瞬时位置,有效减小飞机之间的安全距离,甚至在大雾天气情况下,可以实现自动盲降,极大提高飞行安全和机场运营效率。通过将北斗卫星导航系统与其他系统的有效结合,将为航空运输提供更多的安全保障。


北斗卫星导航系统

应急救援

卫星导航已广泛用于沙漠、山区、海洋等人烟稀少地区的搜索救援。在发生地震、洪灾等重大灾害时,救援成功的关键在于及时了解灾情并迅速到达救援地点。北斗卫星导航系统除导航定位外,还具备短报文通信功能,通过卫星导航终端设备可及时报告所处位置和受灾情况,有效缩短救援搜寻时间,提高抢险救灾时效,大大减少人民生命财产损失。

指导放牧

北斗卫星导航系统 北斗卫星导航系统 北斗卫星导航系统-系统构成,北斗卫星导航系统

2014年10月,北斗系统开始在青海省牧区试点建设北斗卫星放牧信息化指导系统,主要依靠牧区放牧智能指导系统管理平台、牧民专用北斗智能终端和牧场数据采集自动站,实现数据信息传输,并通过北斗地面站及北斗星群中转、中继处理,实现草场牧草、牛羊的动态监控。2015年夏季,试点牧区的牧民就能使用专用北斗智能终端设备来指导放牧。

北斗卫星导航系统图_北斗卫星导航系统 -标准制订

北斗接收机国际通用数据标准的制修订是北斗全球应用和产业发展的基础性工作之一,与卫星导航接收机密切相关的RTCM差分系列标准、RINEX接收机交换数据格式、NMEA接收机导航定位数据接口等通用数据标准几乎是世界上所有卫星导航接收机都必须遵守的通用标准。然而,全球有多个全球卫星导航系统(GNSS)接收设备技术标准制定组织,参与其中的中国企业和机构却寥寥无几。例如,成立于1947年的国际海事无线电技术委员会(RTCM)目前有130多个成员,却只有2家中国企业成员。成立于1957年的美国国家海洋电子协会(NMEA),535个成员中只有1家中国企业成员。对于正式提供服务近两年的北斗系统而言,参与国际标准的建设任重而道远。

全国北斗卫星导航标准化技术委员会于2014年成立,15项北斗应用基础标准正在制定中,部分关键标准计划在今年底对外发布。届时,北斗系统将完成北斗产业链中标准规范关键环节的布局,北斗应用也将进入标准化、规范化以及通用化的快车道。

在国际方面,在中国民航局、交通部海事局、工信部科技司等部门指导下,依托中国航天标准化研究所、北京航空航天大学、交通部水运科学研究院、工信部电信研究院、武汉导航与位置服务工业技术研究院等科研院所,先后启动了北斗系统进入国际民航、海事、移动通信、接收机通用数据标准等国际标准工作。经过各方协作和配合,北斗国际标准工作捷报频传。国际民航组织(ICAO)同意北斗系统逐步进入ICAO标准框架;国际海事组织(IMO)批准发布了《船载北斗接收机设备性能标准》,实现了北斗国际标准的‘零’突破,完成了北斗系统作为全球无线电导航系统(WWRNS)重要组成部分的技术认可工作,有望在今年底成为第三个被IMO认可的WWRNS;第三代移动通信标准化伙伴项目(3GPP)支持北斗定位业务的技术标准已获得通过。北斗已经开启了走向国际民航、国际海事、国际移动通信等高端应用领域的破冰之旅。

2014年9月8日至9日,国际海事无线电技术委员会第104专业委员会(RTCM SC-104)全体会议在美国佛罗里达州坦帕市会议中心召开,来自Trimble、Novatel、Geo++、USCG(美国海岸警卫队)等全球20多个GNSS高精度知名企业(机构)和重要用户单位的30多位专家代表与会。武汉导航与位置服务工业技术研究院和上海司南卫星导航技术有限公司组团参加,圆满完成各项既定任务。

RTCM SC-104主要负责差分全球卫星导航系统(DGNSS)系列推荐标准的制修订,以及参与接收机自主交换格式(RINEX)、接收机导航定位数据输出接口协议(NMEA-0183)等国际通用数据标准的制修订工作。该委员会由全球从事卫星导航设备生产、技术研发、系统服务的知名企业机构成员组成,下设GLONASS 、Galileo、RINEX、NMEA、BDS等工作组。武汉导航院为BDS工作组主席单位,北斗专项应用推广与产业化专家组专家韩绍伟博士任BDS工作组主席。

会上,武汉导航院韩绍伟博士代表BDS工作组,向委员会全体会议汇报了对BDS NH码的处理方法,澄清了对NH码实现过程中因符号规则理解差异造成的差分解算失效、接收机无法兼容等问题,给出了解决方案并获得委员会一致通过。该问题的解决打消了国际社会对BDS高精度可靠应用的疑虑,对促进北斗高精度全球应用具有重要作用。另外,韩绍伟博士代表BDS工作组就BDS导航电文数据组识别符的研究进展向委员会全体会议进行了汇报,对其组成、产生、判别方法等进行了探讨,该识别符是BDS实现可靠实时差分应用的重要因素,也是北斗进入RTCM差分标准的关键参数。BDS工作组将就该问题继续与有关各方深入合作,寻求最终解决方案。

最后,BDS工作组提议2015年5月11-12日在中国西安召开RTCM SC104全体会议,并邀请专家参加2015年5月13-15日在中国西安召开的第六届中国卫星导航学术年会(CSNC2015),该提议获得委员会成员的通过。这是中国首次获得RTCM SC104全体会议主办权,标志着以中国企业为主体推动北斗加入 RTCM 、RINEX、NMEA等国际通用数据标准工作得到国际认可,显示了国际社会对北斗高精度全球应用的期待和信心,必将有助于加速北斗进入系列国际通用数据标准工作。

  

爱华网本文地址 » http://www.413yy.cn/a/8103470103/107616.html

更多阅读

北斗卫星导航 北斗导航现在能用吗

北斗系统不断开拓新市场 产业链将迎爆发增长为进一步在全国范围内推广北斗卫星导航系统的应用,中国位联于近日启动了“百城百联百用”行动计划。8月9日,中国卫星导航定位协会与中国城市燃气协会在京签署战略合作协议,通过北斗精准位置

伽利雷·伽利略 伽利略导航系统

伽利略·伽利雷百科名片 伽利略意大利物理学家、天文学家和哲学家,近代实验科学的先驱者。人们争相传颂:“哥伦布发现了新大陆,伽利略发现了新宇宙”。中文名: 伽利略·伽利雷外文名: Galileo Galilei国籍: 意大利出生地: 意大利西海岸比萨

惯性导航系统中常用的坐标系 捷联式惯性导航系统

(1)地心惯性坐标系(简称i系)-OXiYiZi:原点在地球中心,它不参与地球自转,OXi、OYi轴在赤道平面内正交并指向空间的两颗星,OZi轴平行与地球自转周并指向地球的北极。三个坐标轴指向惯性空间固定不动,这个坐标系是惯性仪表测量的参考标准。(2

北斗导航与GPS对比 华为北斗导航怎么用

1.北斗卫星导航系统技术上可以和GPS一代媲美定位精度两者差距不大,GPS系统更成熟些首先,中国的北斗卫星导航系统确有值得称赞的地方,它是继美国GPS、俄罗斯GLONASS后第三个进入GNSS(全球定位导航系统)俱乐部的导航系统,也是联合国卫星导航

北斗导航与GPS大比拼 北斗导航和gps的区别

??GNSS的全称是全球导航卫星系统(Global Navigation Satellite System),它泛指所有的卫星导航系统,包括全球的、区域的和增强的,如美国的GPS、俄罗斯的Glonass、欧洲的Galileo、中国的北斗卫星导航系统,以及相关的增强系统,如美国的WAAS(广

声明:《北斗卫星导航系统 北斗卫星导航系统 北斗卫星导航系统-系统构成,北斗卫星导航系统》为网友竒玅快分享!如侵犯到您的合法权益请联系我们删除