算法是指解题方案的准确而完整的描述,是一系列解决问题的清晰指令,算法代表着用系统的方法描述解决问题的策略机制;它是求解问题类的、机械的、统一的方法,常用于计算、数据处理(英语:Data processing)和自动推理。可以理解为有基本运算及规定的运算顺序所构成的完整的解题步骤。或者看成按照要求设计好的有限的确切的计算序列,并且这样的步骤和序列可以解决一类问题。算法中的指令描述的是一个计算,当其运行时能从一个初始状态和(可能为空的)初始输入开始,经过一系列有限而清晰定义的状态,最终产生输出并停止于一个终态。一个状态到另一个状态的转移不一定是确定的。随机化算法在内的一些算法,包含了一些随机输入。
算法_算法 -概述
算法求解问题类的、机械的、统一的方法,它由有限多个步骤组成,对于问题类中的每个给定的具体问题,机械地执行这些步骤就可以得到问题的解答。算法的这种特性,使得计算不仅可以由人,而且可以由计算机来完成。用计算机解决问题的过程可以分成三个阶段:分析问题、设计算法和实现算法。
算法_算法 -历史发展
中国古代的筹算口决与珠算口决及其执行规则就是算法的雏形,这里,所解决的问题类是算术运算。古希腊数学家欧几里得在公元前3世纪就提出了一个算法,来寻求两个正整数的最大公约数,这就是有名的欧几里得算法,亦称辗转相除法。中国早已有“算术“、“算法”等词汇,但是它们的含义是指当时的全部数学知识和计算技能,与现代算法的含义不尽相同。英文algorithm(算法)一词也经历了一个演变过程,最初的拼法为algorism或algoritmi,原意为用阿拉伯数字进行计算的过程。这个词源于公元 9世纪波斯数字家阿尔・花拉子米的名字的最后一部分。
在古代,计算通常是指数值计算。现代计算已经远远地突破了数值计算的范围,包括大量的非数值计算,例如检索、表格处理、判断、决策、形式逻辑演绎等。
在20世纪以前,人们普遍地认为,所有的问题类都是有算法的。20世纪初,数字家们发现有的问题类是不存在算法的,遂开始进行能行性研究。在这一研究中,现代算法的概念逐步明确起来。30年代,数字家们提出了递归函数、图灵机等计算模型,并提出了丘奇-图灵论题(见可计算性理论),这才有可能把算法概念形式化。按照丘奇-图灵论题,任意一个算法都可以用一个图灵机来实现,反之,任意一个图灵机都表示一个算法。
按照上述理解,算法是由有限多个步骤组成的,它有下述两个基本特征:每个步骤都明确地规定要执行何种操作;每个步骤都可以被人或机器在有限的时间内完成。人们对于算法还有另一种不同的理解,它要求算法除了上述两个基本特征外,还要具有第三个基本特征:虽然有些步骤可能被反复执行多次,但是在执行有限多次之后,就一定能够得到问题的解答。也就是说,一个处处停机(即对任意输入都停机)的图灵机才表示一个算法,而每个算法都可以被一个处处停机的图灵机来实现
算法_算法 -算法分类
算法算法可大致分为基本算法、数据结构的算法、数论与代数算法、计算几何的算法、图论的算法、动态规划以及数值分析、加密算法、排序算法、检索算法、随机化算法、并行算法。
算法可以宏泛的分为三类:
有限的,确定性算法 这类算法在有限的一段时间内终止。他们可能要花很长时间来执行指定的任务,但仍将在一定的时间内终止。这类算法得出的结果常取决于输入值。
有限的,非确定算法 这类算法在有限的时间内终止。然而,对于一个(或一些)给定的数值,算法的结果并不是唯一的或确定的。
无限的算法 是那些由于没有定义终止定义条件,或定义的条件无法由输入的数据满足而不终止运行的算法。通常,无限算法的产生是由于未能确定的定义终止条件。
算法_算法 -算法特征
算法的五个重要特征:
1、输入项:一个算法有零个或多个输入,以刻画运算对象的初始情况。例如,在欧几里得算法中,有两个输入,即m和n。
2、确定性:算法的每一个步骤必须要确切地定义。即算法中所有有待执行的动作必须严格而不含混地进行规定,不能有歧义性。例如,欧几里得算法中,步骤1中明确规定“以m除以n,而不能有类似以m除n以或n除以m这类有两种可能做法的规定。
3、有穷性:一个算法在执行有穷步滞后必须结束。也就是说,一个算法,它所包含的计算步骤是有限的。例如,在欧几里得算法中,m和n均为正整数,在步骤1之后,r必小于n,若r不等于0,下一次进行步骤1时,n的值已经减小,而正整数的递降序列最后必然要终止。因此,无论给定m和n的原始值有多大,步骤1的执行都是有穷次。
4、输出:算法有一个或多个的输出,即与输入有某个特定关系的量,简单地说就是算法的最终结果。例如,在欧几里得算法中只有一个输出,即步骤2中的n。
5、能行性:算法中有待执行的运算和操作必须是相当基本的,换言之,他们都是能够精确地进行的,算法执行者甚至不需要掌握算法的含义即可根据该算法的每一步骤要求进行操作,并最终得出正确的结果。
算法_算法 -算法要素
数据对象的运算和操作
算法计算机可以执行的基本操作是以指令的形式描述的。一个计算机系统能执行的所有指令的集合,成为该计算机系统的指令系统。一个计算机的基本运算和操作有如下四类:
1.算术运算:加减乘除等运算
2.逻辑运算:或、且、非等运算
3.关系运算:大于、小于、等于、不等于等运算
4.数据传输:输入、输出、赋值等运算
算法的控制结构
一个算法的功能结构不仅取决于所选用的操作,而且还与各操作之间的执行顺序有关。算法_算法 -算法评定
算法的复杂度
1.时间复杂度:算法的时间复杂度是指算法需要消耗的时间资源。2.空间复杂度:算法的空间复杂度是指算法需要消耗的空间资源。其计算和表示方法与时间复杂度类似,一般都用复杂度的渐近性来表示。3.正确性:算法的正确性是评价一个算法优劣的最重要的标准。4.可读性:算法的可读性是指一个算法可供人们阅读的容易程度。
5.健壮性:是指一个算法对不合理数据输入的反应能力和处理能力,也称为容错性。
算法_算法 -描述方式
1、用自然语言描述算法
前面关于欧几里得算法以及算法实例的描述,使用的都是自然语言。自然语言是人们日常所用的语言,如汉语、英语、德语等。使用这些语言不用专门训练,所描述的算法也通俗易懂。
2、用流程图描述算法
在数学课程里,我们学习了用程序框图来描述算法。在程序框图中流程图是描述算法的常用工具由一些图形符号来表示算法。
3、用伪代码描述算法
伪代码是用介于自然语言和计算机语言之间的文字和符号来描述算法的工具。它不用图形符号,因此,书写方便、格式紧凑,易于理解,便于向计算机程序设计语言过度。
算法_算法 -史料记载
算法算法在中国古代文献中称为“术”,最早出现在《周髀算经》、《九章算术》。特别是《九章算术》,给出四则运算、最大公约数、最小公倍数、开平方根、开立方根、求素数的埃拉托斯特尼筛法,线性方程组求解的算法。三国代的刘徽给出求圆周率的算法:刘徽割圆术。
自唐代以来,历代更有许多专门论述“算法”的专著:
唐代:《一位算法》一卷,《算法》一卷;
宋代:《算法绪论》一卷、《算法秘诀》一卷;最著名的是杨辉的《杨辉算法》;
元代:《丁巨算法》;
明代:程大位《算法统宗》
清代:《开平算法》、《算法一得》、《算法全书》。
而英文名称Algorithm来自于9世纪波斯数学家al-Khwarizmi,因为al-Khwarizmi在数学上提出了算法这个概念。“算法”原为"algorism",意思是阿拉伯数字的运算法则,在18世纪演变为"algorithm"。欧几里得算法被人们认为是史上第一个算法。第一次编写程序是AdaByron于1842年为巴贝奇分析机编写求解解伯努利方程的程序,因此AdaByron被大多数人认为是世界上第一位程序员。因为查尔斯・巴贝奇(CharlesBabbage)未能完成他的巴贝奇分析机,这个算法未能在巴贝奇分析机上执行。因为"well-definedprocedure"缺少数学上精确的定义,19世纪和20世纪早期的数学家、逻辑学家在定义算法上出现了困难。20世纪的英国数学家图灵提出了著名的图灵论题,并提出一种假想的计算机的抽象模型,这个模型被称为图灵机。图灵机的出现解决了算法定义的难题,图灵的思想对算法的发展起到了重要作用的。求素数的埃拉托塞尼筛法和求方根的开方的方法公式(算法不等于公式,公式却是提供一种算法)
算法_算法 -基本方法
1.递推法
算法递推法是利用问题本身所具有的一种递推关系求问题解的一种方法。它把问题分成若干步,找出相邻几步的关系,从而达到目的,此方法称为递推法。
2.递归法
递归指的是一个过程:函数不断引用自身,直到引用的对象已知
3.穷举搜索法
穷举搜索法是对可能是解的众多候选解按某种顺序进行逐一枚举和检验,并从众找出那些符合要求的候选解作为问题的解。
4.贪婪法
贪婪法是一种不追求最优解,只希望得到较为满意解的方法。贪婪法一般可以快速得到满意的解,因为它省去了为找最优解要穷尽所有可能而必须耗费的大量时间。贪婪法常以当前情况为基础作最优选择,而不考虑各种可能的整体情况,所以贪婪法不要回溯。
5.分治法
分治法是把一个复杂的问题分成两个或更多的相同或相似的子问题,再把子问题分成更小的子问题……直到最后子问题可以简单的直接求解,原问题的解即子问题的解的合并。
6.动态规划法
动态规划是一种在数学和计算机科学中使用的,用于求解包含重叠子问题的最优化问题的方法。其基本思想是,将原问题分解为相似的子问题,在求解的过程中通过子问题的解求出原问题的解。动态规划的思想是多种算法的基础,被广泛应用于计算机科学和工程领域。
7.迭代法
迭代法是数值分析中通过从一个初始估计出发寻找一系列近似解来解决问题(一般是解方程或者方程组)的过程,为实现这一过程所使用的方法统称为迭代法。
8.分支界限法
与贪婪算法一样,这种方法也是用来为组合优化问题设计求解算法的,所不同的是它在问题的整个可能解空间搜索,所设计出来的算法虽其时间复杂度比贪婪算法高,但它的优点是与穷举法类似,都能保证求出问题的最佳解,而且这种方法不是盲目的穷举搜索,而是在搜索过程中通过限界,可以中途停止对某些不可能得到最优解的子空间进一步搜索(类似于人工智能中的剪枝),故它比穷举法效率更高。