迭代器(Iterator)模式,又叫做游标(Cursor)模式。GOF给出的定义为:提供一种方法访问一个容器(container)对象中各个元素,而又不需暴露该对象的内部细节。 从定义可见,迭代器模式是为容器而生。很明显,对容器对象的访问必然涉及到遍历算法。你可以一股脑的将遍历方法塞到容器对象中去;或者根本不去提供什么遍历算法,让使用容器的人自己去实现去吧。这两种情况好像都能够解决问题。
iterator_iterator -定义结构
然而在前一种情况,容器承受了过多的功能,它不仅要负责自己“容器”内的元素维护(添加、删除等等),而且还要提供遍历自身的接口;而且由于遍历状态保存的问题,不能对同一个容器对象同时进行多个遍历。第二种方式倒是省事,却又将容器的内部细节暴露无遗。
而迭代器模式的出现,很好的解决了上面两种情况的弊端。先来看下迭代器模式的真面目吧。
迭代器模式由以下角色组成:
1) 迭代器角色(Iterator):迭代器角色负责定义访问和遍历元素的接口。
2) 具体迭代器角色(Concrete Iterator):具体迭代器角色要实现迭代器接口,并要记录遍历中的当前位置。
3) 容器角色(Container):容器角色负责提供创建具体迭代器角色的接口。
4) 具体容器角色(Concrete Container):具体容器角色实现创建具体迭代器角色的接口――这个具体迭代器角色与该容器的结构相关。
迭代器模式的类图如下:
从结构上可以看出,迭代器模式在客户与容器之间加入了迭代器角色。迭代器角色的加入,就可以很好的避免容器内部细节的暴露,而且也使得设计符合“单一职责原则”。
注意,在迭代器模式中,具体迭代器角色和具体容器角色是耦合在一起的――遍历算法是与容器的内部细节紧密相关的。为了使客户程序从与具体迭代器角色耦合的困境中脱离出来,避免具体迭代器角色的更换给客户程序带来的修改,迭代器模式抽象了具体迭代器角色,使得客户程序更具一般性和重用性。这被称为多态迭代。
iterator_iterator -适用情况
由上面的讲述,我们可以看出迭代器模式给容器的应用带来以下好处:
1) 支持以不同的方式遍历一个容器角色。根据实现方式的不同,效果上会有差别。
2) 简化了容器的接口。但是在java Collection中为了提高可扩展性,容器还是提供了遍历的接口。
3) 对同一个容器对象,可以同时进行多个遍历。因为遍历状态是保存在每一个迭代器对象中的。
由此也能得出迭代器模式的适用范围:
1) 访问一个容器对象的内容而无需暴露它的内部表示。
2) 支持对容器对象的多种遍历。
3) 为遍历不同的容器结构提供一个统一的接口(多态迭代)。
iterator_iterator -简介
Iterator(迭代器)模式又称Cursor(游标)模式,用于提供一种方法顺序访问一个聚合对象中各个元素, 而又不需暴露该对象的内部表示。或者这样说可能更容易理解:Iterator模式是运用于聚合对象的一种模式,通过运用该模式,使得我们可以在不知道对象内部表示的情况下,按照一定顺序(由iterator提供的方法)访问聚合对象中的各个元素。
由于Iterator模式的以上特性:与聚合对象耦合,在一定程度上限制了它的广泛运用,一般仅用于底层聚合支持类,如STL的list、vector、stack等容器类及ostream_iterator等扩展iterator。
根据STL中的分类,iterator包括:
输入迭代器(Input Iterator):通过对输入迭代器解除引用,它将引用对象,而对象可能位于集合中。最严格的输入迭代只能以只读方式访问对象。
输出迭代器(Output Iterator):该类迭代器和Input Iterator极其相似,也只能单步向前迭代元素,不同的是该类迭代器对元素只有写的权力。
以上两种基本迭代器可进一步分为三类:
前向迭代器(Forward Iterator):该类迭代器可以在一个正确的区间中进行读写操作,它拥有Input Iterator的所有特性,和Output Iterator的部分特性,以及单步向前迭代元素的能力。
双向迭代器(Bidirectional Iterator):该类迭代器是在Forward Iterator的基础上提供了单步向后迭代元素的能力。
随机迭代器(Random Access Iterator):该类迭代器能完成上面所有迭代器的工作,它自己独有的特性就是可以像指针那样进行算术计算,而不是仅仅只有单步向前或向后迭代。
vector 和deque提供的是RandomAccessIterator,list提供的是BidirectionalIterator,set和map提供的 iterators是 ForwardIterator,关于STL中iterator的更多信息,请阅读参考1或2。
应用
Iterator模式有三个重要的作用:
1)它支持以不同的方式遍历一个聚合 复杂的聚合可用多种方式进行遍历,如二叉树的遍历,可以采用前序、中序或后序遍历。迭代器模式使得改变遍历算法变得很容易: 仅需用一个不同的迭代器的实例代替原先的实例即可,你也可以自己定义迭代器的子类以支持新的遍历,或者可以在遍历中增加一些逻辑,如有条件的遍历等。
2)迭代器简化了聚合的接口 有了迭代器的遍历接口,聚合本身就不再需要类似的遍历接口了,这样就简化了聚合的接口。
3)在同一个聚合上可以有多个遍历 每个迭代器保持它自己的遍历状态,因此你可以同时进行多个遍历。
4)此外,Iterator模式可以为遍历不同的聚合结构(需拥有相同的基类)提供一个统一的接口,即支持多态迭代。
简 单说来,迭代器模式也是Delegate原则的一个应用,它将对集合进行遍历的功能封装成独立的Iterator,不但简化了集合的接口,也使得修改、增 加遍历方式变得简单。从这一点讲,该模式与Bridge模式、Strategy模式有一定的相似性,但Iterator模式所讨论的问题与集合密切相关, 造成在Iterator在实现上具有一定的特殊性,具体将在示例部分进行讨论。
正如前面所说,与集合密切相关,限制了 Iterator模式的广泛使用。在一般的底层集合支持类中,我们往往不愿“避轻就重”将集合设计成集合 + Iterator 的形式,而是将遍历的功能直接交由集合完成,以免犯了“过度设计”的诟病,但是,如果我们的集合类确实需要支持多种遍历方式(仅此一点仍不一定需要考虑 Iterator模式,直接交由集合完成往往更方便),或者,为了与系统提供或使用的其它机制,如STL算法,保持一致时,Iterator模式才值得考 虑。
举例
可以考虑使用两种方式来实现Iterator模式:内嵌类或者友元类。通常迭代类需访问集合类中的内部数据结构,为此,可在集合类中设置迭代类为friend class,但这不利于添加新的迭代类,因为需要修改集合类,添加friend class语句。也可以在抽象迭代类中定义protected型的存取集合类内部数据的函数,这样迭代子类就可以访问集合类数据了,这种方式比较容易添加新的迭代方式,但这种方式也存在明显的缺点:这些函数只能用于特定聚合类,并且,不可避免造成代码更加复杂。
STL的list::iterator、deque::iterator、rbtree::iterator等采用的都是外部Iterator类的形式,虽然STL的集合类的iterator分散在各个集合类中,但由于各Iterator类具有相同的基类,保持了相同的对外的接口(包括一些traits及tags等,感兴趣者请认真阅读参考1、2),从而使得它们看起来仍然像一个整体,同时也使得应用algorithm成为可能。我们如果要扩展STL的iterator,也需要注意这一点,否则,我们扩展的iterator将可能无法应用于各algorithm。
以下是一个遍历二叉树的Iterator的例子,为了方便支持多种遍历方式,并便于遍历方式的扩展,其中还使用了Strategy模式(见笔记21):
(注:1、虽然下面这个示例是本系列所有示例中花费我时间最多的一个,但我不得不承认,它非常不完善,感兴趣的朋友,可以考虑参考下面的参考材料将其补充完善,或提出宝贵改进意见。2、 我本想考虑将其封装成与STL风格一致的形式,使得我们遍历二叉树必须通过Iterator来进行,但由于二叉树在结构上较线性存储结构复杂,使访问必须 通过Iterator来进行,但这不可避免使得BinaryTree的访问变得异常麻烦,在具体应用中还需要认真考虑。3、以下只提供了Inorder遍历iterator的实现。)
#include
#include
#include
#include
#include
using namespace std;
template
class BinaryTree;
template
class Iterator;
template
class BinaryTreeNode
{
public:
typedef BinaryTreeNodeNODE;
typedef BinaryTreeNode* NODE_PTR;
BinaryTreeNode(const T& element) : data(element), leftChild(NULL), rightChild(NULL), parent(NULL) { }
BinaryTreeNode(const T& element, NODE_PTR leftChild, NODE_PTR rightChild)
:data(element), leftChild(leftChild), rightChild(rightChild), parent(NULL)
{
if (leftChild)
leftChild->setParent(this);
if (rightChild)
rightChild->setParent(this);
}
T getData(void) const { return data; }
NODE_PTR getLeft(void) const { return leftChild; }
NODE_PTR getRight(void) const { return rightChild; }
NODE_PTR getParent(void) const { return parent; }
void SetData(const T& data) { this->data = item; }
void setLeft(NODE_PTR ptr) { leftChild = ptr; ptr->setParent(this); }
void setRight(NODE_PTR ptr) { rightChild = ptr; ptr->setParent(this); }
void setParent(NODE_PTR ptr) { parent = ptr; }
private:
T data;
NODE_PTR leftChild;
NODE_PTR rightChild;
NODE_PTR parent; // pointer to parent node, needed by iterator
friend class BinaryTree;
};