数学分析是以函数为研究对象的数学学科,又称高级微积分,分析学中最古老、最基本的分支。一般指以微积分学和无穷级数一般理论为主要内容,并包括它们的理论基础(实数、函数和极限的基本理论)的一个较为完整的数学学科。它也是大学数学专业的一门基础课程。数学中的分析分支是专门研究实数与复数及其函数的数学分支。它的发展由微积分开始,并扩展到函数的连续性、可微分及可积分等各种特性。这些特性,有助我们应用在对物理世界的研究,研究及发现自然界的规律。
数学分析_数学分析 -数学分析
数学分析_数学分析 -正文
以函数为研究对象的数学学科。广义的数学分析包括微积分学、复变函数、实变函数、微分方程、积分方程、泛函分析等数学分支。这里所说的数学分析是狭义的,它专指微积分学。数学史上有时也把微积分叫做无穷小量分析。
微积分的思想早在古代希腊和中国就已经有了雏形。到17世纪,生产和科学的发展向数学提出新的研究课题,例如,求物体运动的瞬时速度、曲线的切线、函数的极值以及由曲边形围成的图形面积等问题。这些问题都牵涉变动的量,但以常数为研究对象的初等数学对此却无能为力,因而迫切需要建立一种以变量为研究对象的新数学。17世纪下半叶,I.牛顿和G.W.莱布尼茨各自独立地建立了微积分计算法。它不仅使以前需要用各种特殊技巧分别处理的难题有了统一的解决办法,而且大大简化了积分运算。微积分一经产生就在实践中显示出巨大的威力,但它在逻辑推理上却存在着矛盾。1821年,法国数学家A.L.柯西(1789~1857)对极限概念作了明确定义,并且以此为基础澄清了连续、导数、积分等基本概念,使得微积分成为比较严密的理论。19世纪70年代,德国的K.魏尔施特拉斯(1815~1897)等人进一步把极限概念奠定在实数理论的基础上,实现了数学分析的算术化,使得微积分具有今天的严密形式。
300多年来,微积分除了寻找自身的逻辑基础以外,还发展出许多新的分支学科。同时,微积分这一古老的学科发展到20世纪还出现了一些新的形态,如非标准分析等。
微积分的发展过程体现着人们认识无穷小量的深化过程。在古代,随着原子论思想进入数学,人们从感性直观上认识到存在实在无限小量。后来,随着穷竭法的出现,又认识到存在潜在的无限小量,并且否定实在无限小量的存在性。牛顿、莱布尼茨的微积分实质上是采用了实在无限小量的概念,排斥了潜在无限小量。他们从几何和物理的直观上把握了实在无限小量的零与非零的性质,但由于当时对实在无限小量缺乏深刻的认识,不能精确地表述这一概念,所以在推理论证上产生逻辑矛盾,微积分也就成了当时数学哲学争论的焦点。柯西把无限小量定义为以零为极限的变量以后,一方面使得人们对无限小量的认识前进了一步,即认识到它在变化过程中是非零,但其变化的趋势却是零,而且可以无限地趋近于零,这就解决了无限小量是零还是非零的哲学问题,同时导致一些数学家只肯定潜在无限小量而否定实在无限小量。20世纪60年代,A.鲁宾逊(1918~1974)从数学上严格证明了在数系中存在着实在无限小量,进而把数域从实数域扩大到非标准的实数域,并在此基础上建立了非标准分析理论。实在无限小量是一个大于零而小于任意实数的量,它在实数域中表现为零,在非标准实数域中则表现为非零。这样,人们就可以从数系的不同层次上清楚而直观地理解实在无限小量的零与非零性质。至此,人们在对无穷小量的认识上,已经克服了两种片面性,更深刻地认识到无穷小量的辩证性质。同时,在这一认识的基础上,产生了两种形式的分析学──微积分学和非标准分析。
参考书目
C.B.波耶著,上海师范大学数学系译:《微积分概念史》,上海人民出版社,上海,1977。
A.鲁滨逊著、申又枨等译:《非标准分析》,科学出版社,北京,1980。
数学分析_数学分析 -配图
数学分析
数学分析_数学分析 -相关联系
微积分理论的产生离不开物理学,天文学,经济学,几何学等学科的发展,微积分理论从其产生之日起就显示了巨大的应用活力,所以在数学分析的教学中,应强化微积分与相邻学科之间的联系,强调应用背景,充实理论的应用性内容。数学分析的教学除体现本课程严格的逻辑体系外,也要反映现代数学的发展趋势,吸收和采用现代数学的思想观点与先进的处理方法,提高学生的数学修养。