“数轴穿根法”又称“数轴标根法” .简单记为“奇穿过,偶弹回”或“自上而下,从右到左,奇次根一穿而过,偶次根一穿不过。”.
数轴标根法_穿线法 -步骤
第一步:通过不等式的诸多性质对不等式进行移项,使得右侧为0,并分解因式。(注意:一定要保证x前的系数为正数)
例如:将x^3-2x^2-x+2>0化为(x-2)(x-1)(x+1)>0
第二步:将不等号换成等号解出所有根。
例如:(x-2)(x-1)(x+1)=0的根为:x1=2,x2=1,x3=-1
第三步:在数轴上从左到右依次标出各根。
例如:-1 1 2
第三步:画穿根线:以数轴为标准,从“最右根”的右上方穿过根,往左下画线,然后又穿过“次右根”上去,一上一下依次穿过各根。
第四步:观察不等号,如果不等号为“>”,则取数轴上方,穿根线以内的范围;如果不等号为“
数轴标根法_穿线法 -示例
:
求(x-2)(x-1)(x+1)>0的根。
在数轴上标根得:-1 1 2
画穿根线:由右上方开始穿根。
因为不等号威“>”则取数轴上方,穿根线以内的范围。即:x∈(-1,1)∪(2,+∞)
数轴标根法_穿线法 -注意
:穿根前应注意,每项X系数均为正,否则应先则提取负号,改变相应不等号方向,再穿根。例如(2-x)(x-1)(x+1)0,再穿根。
当不等式中含有有单独的x偶幂项时,如(x^2)或(x^4)时,穿根线是不穿过0点的。但是对于X奇数幂项,就要穿过0点了。
还有一种情况,例如:(X-1)^2 当不等式里出现这种部分时,线是不穿过1点的。但是对于如(X-1)^3的式子,穿根线要过1点。也是奇过偶不过。
总结出来可以简单记为“奇穿过,偶弹回”或“自上而下,从右到左,奇次根一穿而过,偶次根一穿不过”
关于分号的问题:当不等式移项后,可能是分式,同样是可以用穿根法的,直接把分号下面的乘上来,变成乘法式子。继续用穿根法,但是注意,分母不能为零。