蛋白质结构 蛋白质结构-历史,蛋白质结构-结构种类

蛋白质结构是指蛋白质分子的空间结构。作为一类重要的生物大分子,蛋白质主要由碳、氢、氧、氮、硫等化学元素组成。所有蛋白质都是由20种不同的L型α氨基酸连接形成的多聚体,在形成蛋白质后,这些氨基酸又被称为残基。蛋白质和多肽之间的界限并不是很清晰,有人基于发挥功能性作用的结构域所需的残基数认为,若残基数少于40,就称之为多肽或肽。要发挥生物学功能,蛋白质需要正确折叠为一个特定构型,主要是通过大量的非共价相互作用(如氢键,离子键,范德华力和疏水作用)来实现;此外,在一些蛋白质(特别是分泌性蛋白质)折叠中,二硫键也起到关键作用。为了从分子水平上了解蛋白质的作用机制,常常需要测定蛋白质的三维结构。由研究蛋白质结构而发展起来了结构生物学,采用了包括X射线晶体学、核磁共振等技术来解析蛋白质结构。一定数量的残基对于发挥某一生物化学功能是必要的;40-50个残基通常是一个功能性结构域大小的下限。蛋白质大小的范围可以从这样一个下限一直到数千个残基。目前估计的蛋白质的平均长度在不同的物种中有所区别,一般约为200-380个残基,而真核生物的蛋白质平均长度比原核生物长约55%。更大的蛋白质聚合体可以通过许多蛋白质亚基形成;如由数千个肌动蛋白分子聚合形成蛋白纤维。

蛋白质分子结构_蛋白质结构 -历史


蛋白质结构

1959年佩鲁茨和肯德鲁对血红蛋白和肌血蛋白进行结构分析,解决了三维空间结构,获1962年化学奖。

1962年,鲍林发现了蛋白质的基本结构,克里克、沃森在X射线衍射资料的基础上,提出了DNA三维结构的模型。获1962年生理或医学奖。50年代后豪普特曼和卡尔勒建立了应用X射线分析的以直接法测定晶体结构的纯数学理论,在晶体研究中具有划时代的意义,特别在研究大分子生物物质如激素、抗生素、蛋白质及新型药物分子结构方面趣了重要作用。他们因此获1985年化学奖。

蛋白质分子结构_蛋白质结构 -结构种类

蛋白质分子是由氨基酸首尾相连缩合而成的共价多肽链,但是天然蛋白质分子并不是走向随机的松散多肽链。每一种天然蛋白质都有自己特有的空间结构或称三维结构,这种三维结构通常被称为蛋白质的构象,即蛋白质的结构。

蛋白质的分子结构可划分为四级,以描述其不同的方面:

一级结构:组成蛋白质多肽链的线性氨基酸序列。

二级结构:依靠不同氨基酸之间的C=O和N-H基团间的氢键形成的稳定结构,主要为α螺旋和β折叠。

三级结构:通过多个二级结构元素在三维空间的排列所形成的一个蛋白质分子的三维结构。

蛋白质结构 蛋白质结构-历史,蛋白质结构-结构种类

四级结构:用于描述由不同多肽链(亚基)间相互作用形成具有功能的蛋白质复合物分子。

除了这些结构层次,蛋白质可以在多个类似结构中转换,以行使其生物学功能。对于功能性的结构变化,这些三级或四级结构通常用化学构象进行描述,而相应的结构转换就被称为构象变化。

一级结构

蛋白质的一级结构(primary structure)就是蛋白质多肽链中氨基酸残基的排列顺序(sequence),也是蛋白质最基本的结构。它是由基因上遗传密码的排列顺序所决定的。各种氨基酸按遗传密码的顺序,通过肽键连接起来,成为多肽链,故肽键是蛋白质结构中的主键。

迄今已有约一千种左右蛋白质的一级结构被研究确定,如胰岛素,胰核糖核酸酶、胰蛋白酶等。

蛋白质的一级结构决定了蛋白质的二级、三级等高级结构,成百亿的天然蛋白质各有其特殊的生物学活性,决定每一种蛋白质的生物学活性的结构特点,首先在于其肽链的氨基酸序列,由于组成蛋白质的20种氨基酸各具特殊的侧链,侧链基团的理化性质和空间排布各不相同,当它们按照不同的序列关系组合时,就可形成多种多样的空间结构和不同生物学活性的蛋白质分子。

蛋白质分子的多肽链并非呈线形伸展,而是折叠和盘曲构成特有的比较稳定的空间结构。蛋白质的生物学活性和理化性质主要决定于空间结构的完整,因此仅仅测定蛋白质分子的氨基酸组成和它们的排列顺序并不能完全了解蛋白质分子的生物学活性和理化性质。例如球状蛋白质(多见于血浆中的白蛋白、球蛋白、血红蛋白和酶等)和纤维状蛋白质(角蛋白、胶原蛋白、肌凝蛋白、纤维蛋白等),前者溶于水,后者不溶于水,显而易见,此种性质不能仅用蛋白质的一级结构的氨基酸排列顺序来解释。

蛋白质的空间结构就是指蛋白质的二级、三级和四级结构。

二级结构

蛋白质的二级结构(secondary structure)是指多肽链中主链原子的局部空间排布即构象,不涉及侧链部分的构象。

1.肽键平面(或称酰胺平面,amide plane)。

Pauling等人对一些简单的肽及氨基酸的酰胺等进行了X线衍射分析,从一个肽键的周围来看,得知:

(1)肽链中的C-N键长0.132nm,比相邻的N-C单键(0.147nm)短,而较一般C=N双键(0.128nm)长,可见,肽键中-C-N-键的性质介于单、双键之间,具有部分双键的性质,因而不能旋转,这就将固定在一个平面之内。

(2) 肽键的C及N周围三个键角之和均为360°,说明都处于一个平面上,也就是说六个原子基本上同处于一个平面,这就是肽键平面。肽链中能够旋转的只有α碳原子所形成的单键,此单键的旋转决定两个肽键平面的位置关系,于是肽键平面成为肽链盘曲折叠的基本单位。

(3) 肽键中的C-N既具有双键性质,就会有顺反不同的立体异构,已证实处于反位。

2.蛋白质主链构象的结构单元

1)α-螺旋Pauling等人对α-角蛋白(α-keratin)进行了X线衍射分析,从衍射图中看到有0.5~0.55nm的重复单位,故推测蛋白质分子中有重复性结构,并认为这种重复性结构为α-螺旋(α-helix).

α-螺旋的结构特点如下:

①多个肽键平面通过α-碳原子旋转,相互之间紧密盘曲成稳固的右手螺旋。

②主链呈螺旋上升,每3.6个氨基酸残基上升一圈,相当于0.54nm,这与X线衍射图符合。

③相邻两圈螺旋之间借肽键中C=O和H

  

爱华网本文地址 » http://www.413yy.cn/a/8103220103/17662.html

更多阅读

二元逻辑回归结果分析 中国二元经济的历史逻辑和结构刚性

摘要  按照经济发展的一般趋势:一国在经济发展的过程中都会出现刘易斯二元经济结构,并且随着经济的继续发展,这一二元结构会逐渐的消失。这一结论不管是在理论上还是在实证中都得到了广泛的支持。我国在经济发展的过程中的二元结构

水表的结构和工作原理 水表 水表-历史起源,水表-结构原理

水表,内部结构从外向里可分为壳体、套筒、内芯三大件。是用以累计流过管道中水的总量的流量测量仪表。记录自来水用水量的仪表,装在水管上,当用户放水时,表上指针或字轮转动指出通过的水量。水表结构_水表 -历史起源水表从1825年英国

声明:《蛋白质结构 蛋白质结构-历史,蛋白质结构-结构种类》为网友不告白做朋友分享!如侵犯到您的合法权益请联系我们删除