可燃冰的形成 可燃冰是怎么形成的 可燃冰的形成原因

可燃冰的形成 可燃冰是怎么形成的 可燃冰的形成原因

  可燃冰是分布于深海沉积物或陆域的永久冻土中,由天然气与水在高压低温条件下形成的类冰状的结晶物质,形成可燃冰有什么条件呢?下面就让爱华网小编来给你科普一下可燃冰是怎么形成的。

  可燃冰的形成

  海洋生成

  有两种不同种类的海洋存量。最常见的绝大多数(> 99%)都是甲烷包覆于结构一型的包合物,而且一般都在沉淀物的深处才能发现。在此结构下,甲烷中的碳同位素较轻(δ13C < -60‰),因此指出其是微生物由CO2的氧化还原作用而来。这些位于深处矿床的包合物,一般认为应该是从微生物产生的甲烷环境中原处形成,因为这些包合物与四周溶解的甲烷其δ13C值是相似的。

  这些矿床坐落于中深度范围的区域内,大约300-500m厚的沉积物中(称作气水化合物稳定带(GasHydrate Stability Zone)或 GHSZ),且该处共存著溶于孔隙水的甲烷。在这区域之下,甲烷只会以溶解型态存在,并随着沉积物表层的距离而浓度逐渐递减。而在这之上,甲烷是气态的。在大西洋大陆脊的布雷克海脊,GHSZ在190m的深度开始延伸至450m处,并于该点达到气态的相平衡。测量结果指出,甲烷在GHSZ的体积占了0-9% ,而在气态区域占了大约12%的体积。

  在接近沉积物表层所发现较少见的第二种结构中,某些样本有较高比例的碳氢化合物长链(<99% 甲烷)包含于结构二型的包合物中。其甲烷的碳同位素较重(δ13C 为 -29 至 -57 ‰),据推断是由沉积物深处的有机物质,经热分解后形成甲烷而往上迁移而成。此种类型的矿床在墨西哥湾和里海等海域出现。

  某些矿床具有介于微生物生成和热生成类型的特性,因此预估会出现两种混合的型态。

  气水化合物的甲烷主要由缺氧环境下有机物质的细菌分解。在沉积物最上方几厘米的有机物质会先被好氧细菌所分解,产生CO2,并从沉积物中释放进水团中。在此区域的好氧细菌活动中,硫酸盐会被转变成硫化物。若沉淀率很低(<1厘米/千年)、有机碳成分很低(<1%),且含氧量充足时,好氧细菌会耗光所有沉积物中的有机物质。但该处的沉淀率和有机碳成分都很高,沉积物中的孔隙水仅在几厘米深的地方是缺氧态的,而甲烷会经由厌氧细菌产生。此类甲烷的生成是更为复杂的程序,需要各个种类的细菌活动、一个还原环境(Eh -350 to -450 mV),且环境pH 值需介于6至8之间。在某些海域(例如墨西哥湾)包合物中的甲烷至少会有部份是由有机物质的热分解所产生,但大多是从石油分解而成。包合物中的甲烷一般会具有细菌性的同位素特征,以及很高的 δ13C 值(-40 to -100‰),平均大约是-65‰。在固态包合物地带的下方处,沉积物里的大量甲烷可能以气泡的方式释放出来。

  在给定的地点内判定该处是否含有包合物,大多可以透过观测“海底仿拟反射”(BottomSimulatingReflector,或称BSR)分布,以震测反射(seismicreflection)的方式来扫描洋底沉积物与包合物稳定带之间的接口处,因而可观测出一般沉积物和那些蕴藏包合物沉积物之间的密度差异。

  海洋生成的甲烷包合物,蕴藏量鲜为人知。自从1960至1970年代,包合物首次发现可能存在海洋中的那段时期,其预估的蕴藏量就每十年以数量级的概估速度递减。曾经预估过的蕴藏量(高达3×1018m³)是建构在假设包合物非常稠密地散布在整片深海海床上。然而,随着我们对包合物化学和沉积学等知识进一步的了解,发现水合物只会在某个狭窄范围内(大陆棚)的深度下形成,以及某些地点的深度范围内才会存在(10-30%部分的 GHSZ 区),而且通常是在低浓度(体积的0.9-1.5%)的地点。最新的估计强制采用直接取样的方式,指出全球含量介于 1×1015 和 5×1015 m³ 之间。这个预估结果,对应出大约500至2500个十亿吨单位的碳 (Gt C),比预估所有矿物燃料的5000GtC数量还少,但整体上却超过所预估其他天然气来源的约230Gt C。在北极圈的永冻地带,其储藏量预估可达约400Gt C,但在南极区域并未估出可能的蕴藏量。这些是很大的数字。相较于大气中的总碳数也才大约700个Gt C。

  这些近代的估计结果,与当初人们以为包合物为矿物燃料来源时(MacDonald 1990,Kvenvolden 1998)所提出的10,000to11,000 Gt C (2×1016 m³),数量上明显的要少。包合物藏量的缩减,并未使其失去经济价值,但缩减的整体含量和多数产地明显过低的采集密度,的确指出仅限某些地区的包合物矿床才能提供经济上的实质价值。

  大陆生成

  在大陆岩石内的甲烷包合物会受限在深度800m以上的砂岩或粉沙岩岩床中。采样结果指出,这些包合物以热力或微生物分解气体的混合方式形成,其中较重的碳氢化合物之后才会选择性地被分解。这类的型态存在于阿拉斯加和西伯利亚。

  储量比地球上石油的总储量还大几百倍。这些可然冰都蕴藏在全球各地的450米深的海床上,表面看起来,很象干冰,实际却能燃烧。在美东南沿海水下2700平方米面积的水化物中,含有足够供应美国70多年的可燃冰。其储量预计是常规储量的2.6倍,如果全部开发利用,可使用100年左右。中国地质大学(武汉)和中南石油局第五物探大队在藏北高原羌塘盆地开展的大规模地球物理勘探成果表明:继塔里木盆地后,西藏地区很有可能成为中国21世纪第二个石油资源战略接替区。

  可燃冰的组成结构

  天然气水合物(Natural Gas Hydrate,简称Gas Hydrate),也称为可燃冰、甲烷水合物、甲烷冰、天然气水合物、“笼形包合物”(Clathrate),分子式为:CH4·nH2O,现已证实分子式为CH4·8H2O。。因其外观像冰一样而且遇火即可燃烧,所以又被称作“可燃冰”(英译为:Flammable ice)或者“固体瓦斯”和“气冰”。形成天然气水合物有三个基本条件:温度、压力和原材料。

  天然气水合物是一种白色固体物质,有极强的燃烧力,主要由水分子和烃类气体分子(主要是甲烷)组成,它是在一定条件(合适的温度、压力、气体饱和度、水的盐度、PH值等)下由水和天然气在中高压和低温条件下混合时组成的类冰的、非化学计量的、笼形结晶化合物(碳的电负性较大,在高压下能吸引与之相近的氢原子形成氢键,构成笼状结构)。一旦温度升高或压强降低,甲烷气则会逸出,固体水合物便趋于崩解。

  “天然气水合物”,是天然气在0℃和30个大气压的作用下结晶而成的“冰块”。“冰块”里甲烷占80%~99.9%,可直接点燃。可用mCH4·nH2O来表示,m代表水合物中的气体分子,n为水合指数(也就是水分子数)。组成天然气的成分如CH4、C2H6、C3H8、C4H10等同系物以及CO2、N2、H2S等可形成单种或多种天然气水合物。形成天然气水合物的主要气体为甲烷,对甲烷分子含量超过99%的天然气水合物通常称为甲烷水合物(Methane Hydrate)。每单位晶胞内有两个十二面体(20 个端点因此有 20 个水分子)和六个十四面体(tetrakaidecahedral)(24 个水分子)的水笼结构。其水合值(hydratation value)20 可由 MAS NMR 来求得。 甲烷气水包合物频谱于 275 K 和 3.1 MPa下记录,显示出每个笼形都反映出峰值,且气态的甲烷也有个别的峰值。

  可燃冰的理化性质

  天然气水合物燃烧后几乎不产生任何残渣,污染比煤、石油、天然气都要小得多。1立方米可燃冰可转化为164立方米的天然气和0.8立方米的水。开采时只需将固体的“天然气水合物”升温减压就可释放出大量的甲烷气体。

  天然气水合物在海洋浅水生态圈,通常出现在深层的沉淀物结构中,或是在海床处露出。甲烷气水包合物据推测是因地理断层深处的气体迁移,以及沉淀、结晶等作用,于上升的气体流与海洋深处的冷水接触所形成。

  在高压下,甲烷气水包合物在 18 °C 的温度下仍能维持稳定。一般的甲烷气水化合物组成为 1摩尔的甲烷及每 5.75 摩尔的水,然而这个比例取决于多少的甲烷分子“嵌入”水晶格各种不同的包覆结构中。据观测的密度大约在 0.9 g/cm³。一升的甲烷气水包合物固体,在标准状况下,平均包含 168 升的甲烷气体。

  1立方米的可燃冰可在常温常压下释放164立方米的天然气及0.8立方米的淡水)所以固体状的天然气水合物往往分布于水深大于 300 米 以上的海底沉积物或寒冷的永久冻土中。海底天然气水合物依赖巨厚水层的压力来维持其固体状态,其分布可以从海底到海底之下 1000 米 的范围以内,再往深处则由于地温升高其固体状态遭到破坏而难以存在。

  天然气水合物从物理性质来看,天然气水合物的密度接近并稍低于冰的密度,剪切系数、电解常数和热传导率均低于冰。天然气水合物的声波传播速度明显高于含气沉积物和饱和水沉积物,中子孔隙度低于饱和水沉积物,这些差别是物探方法识别天然气水合物的理论基础。此外,天然气水合物的毛细管孔隙压力较高。

  可燃冰燃烧方程式为:

  CH4·8 H2O+ 2 O2== CO2+ 10 H2O(反应条件为“点燃”)

  可燃冰分子结构就像一个一个由若干水分子组成的笼子。

  形成可燃冰有三个基本条件:温度、压力和原材料。

  首先,低温。可燃冰在0—10℃时生成,超过20℃便会分解。海底温度一般保持在2—4℃左右;

  其次,高压。可燃冰在0℃时,只需30个大气压即可生成,而以海洋的深度,30个大气压很容易保证,并且气压越大,水合物就越不容易分解。

  最后,充足的气源。海底的有机物沉淀,其中丰富的碳经过生物转化,可产生充足的气源。海底的地层是多孔介质,在温度、压力、气源三者都具备的条件下,可燃冰晶体就会在介质的空隙间中生成。

看过“可燃冰的形成原因”的人还看了:

  

爱华网本文地址 » http://www.aihuau.com/a/3875071/121715691.html

更多阅读

长白山天池的形成 长白山天池是怎么形成的?

长白山天池是怎么形成的?在远古时期,长白山原是一座火山。据史籍记载,自16世纪以来它又爆发了3次,当火山爆发喷射出大量熔岩之后,火山口处形成盆状,时间一长,积水成湖,便成了现在的天池。而火山喷发出来的熔岩物质则堆积在火山口周围,成了

寒潮的形成原因 寒潮是怎么形成的 寒潮的注意事项

  寒潮是指冬半年来自极地或寒带的寒冷空气,像潮水一样大规模地向中、低纬度的侵袭活动。那你知道寒潮的形成原因吗?以下是由爱华网小编整理关于寒潮是怎么形成的的内容,希望大家喜欢!  寒潮的形成原因  寒潮是冬季的一种

花岗岩的形成过程 花岗岩是怎么形成的

  花岗岩,大陆地壳的主要组成部分,是一种岩浆在地表以下凝结形成的火成岩,属于深层侵入岩。主要成分是长石、云母和石英。下面由爱华网小编为你详细介绍花岗岩的相关知识。  花岗岩是怎么形成的:  花岗岩与玄武岩 同属岩浆岩

肝癌的形成时间 肝癌是怎么形成的

  癌症,是我们目前最无可奈何的疾病之一。它来势汹汹,夺走了很多人的生命,癌症多发症除了常见肠癌肺癌,还有闻之色变的肝癌。现代人的肝脏问题越来越多,到医院去检查跟做手术的肝脏病患也越来越多,那么肝癌是怎么形成的呢?它有什么可以

石灰岩的形成过程 石灰岩是怎么形成的

  石灰岩(CaCO3)简称灰岩,又叫石灰石,是以方解石为主要成分的碳酸盐岩。石灰岩是喀斯特地形的主要构成成分,是一种在海、湖盆地中生成的灰色或灰白色沉积岩。下面由爱华网小编为你详细介绍石灰岩的相关知识。  石灰岩是怎么形成

声明:《可燃冰的形成 可燃冰是怎么形成的 可燃冰的形成原因》为网友岛城少年分享!如侵犯到您的合法权益请联系我们删除