教材是八年级数学教师教学的主要依据,又是学生学习的重要凭借。目录有什么知识呢?为大家整理了沪科版八年级下册数学目录,欢迎大家阅读!
沪科版八年级下册数学课本目录
第16章 二次根式
16.1 二次根式
16.2二次根式的运算
第17章一元二次方程
17.1 一元二次方程
17.2一元二次方程的解法
17.3一元二次方程的根的判别式
17.4一元二次方程的根与系数的关系
17.5 一元二次方程的应用
第18章勾股定理
18.1 勾股定理
18.2 勾股定理的逆定理
第19章 四边形
19.1 多边形内角和
19.2平行四边形
19.3 矩形 菱形 正方形
19.4 中心对称图形
19.5梯形
第20章数据的初步分析
20.1数据的频数分布
20.2数据的集中趋势与离散程度
20.3综合与实践体重指数
八年级数学重点知识
分母有理化
分母有理化有两种方法
I.分母是单项式
如:√a/√b=√a×√b/√b×√b=√ab/b
II.分母是多项式
要利用平方差公式
如1/√a+√b=√a-√b/(√a+√b)(√a-√b)=√a-√b/a-b
注意:
1.根式中不能含有分母
2.分母中不能含有根式。
一元二次方程
1. 一元二次方程的一般形式: a≠0时,ax2+bx+c=0叫一元二次方程的一般形式,研究一元二次方程的有关问题时,多数习题要先化为一般形式,目的是确定一般形式中的a、 b、 c; 其中a 、 b,、c可能是具体数,也可能是含待定字母或特定式子的代数式.
2. 一元二次方程的解法: 一元二次方程的四种解法要求灵活运用, 其中直接开平方法虽然简单,但是适用范围较小;公式法虽然适用范围大,但计算较繁,易发生计算错误;因式分解法适用范围较大,且计算简便,是首选方法;配方法使用较少.
3. 一元二次方程根的判别式: 当ax2+bx+c=0 (a≠0)时,Δ=b2-4ac 叫一元二次方程根的判别式.请注意以下等价命题:
Δ>0 <=> 有两个不等的实根; Δ=0 <=> 有两个相等的实根;
Δ<0 <=> 无实根; Δ≥0 <=> 有两个实根(等或不等).