对数螺线是一根无止尽的螺线,它永远向着极绕,越绕越靠近极,但又永远不能到达极。据说,使用最精密的仪器也看不到一根完全的对数螺线,这种图形只存在科学家的假想中。 螺线特别是对数螺线的美学意义可以用指数的形式来表达: ρ=αe^(kφ) 其中,α和k为常数,φ是极角,ρ是极径,e是自然对数的底。为了讨论方便,我们把e或由e经过一定变换和复合的形式定义为“自然律”。因此,“自然律”的核心是e,其值为2.71828……,是一个无限不 循环小数。 对数螺线在自然界中最为普遍存在,其它螺线也与对数螺线有一定的关系,不过目前我们仍未找到螺线的通式。
定理
对数螺线的臂的距离以几何级数递增。设 L 为穿过原点的任意直线,则L与对数螺线的相交的角永远相等(故又名等角螺线)(注:太极离相角在各种尺度都是恒定不变的,这是一种不变性,该不变性与自然对数底e以及求导过程不变性密切相关,e=πcosπ/6),而此值为cot-1 ln b。 设 C 为以原点为圆心的任意圆,则 C 与对数螺线的相交的角永远相等,而此值为 tan-1 lnb,名为“倾斜度” 对数螺线是自我相似的;这即是说,对数螺线经放大后可与原图完全相同。 对数螺线的渐屈线和垂足线都是对数螺线。 从原点到对数螺线的任意点上的长度有限,但由那点出发沿对数螺线走到原点却需绕原点转无限次。这是由Torricelli 发现的。
构造对数螺线
在复平面上定义一个复数 z = a + bi,其中 a, b ≠ 0,那么连结 z、z^2、z^3……的曲线就是一条对数螺线(注:由此可与Z变换建立密切联系)。 若 L是复平面中的一条直线且不平行于实数或虚数轴,那么指数函数 e^z 会将这些直线映像到以 0为中心的对数螺线(注:平行于实轴的直线映射为过原点的一条射线,平行于虚轴的直线映射为一个圆,这恰恰是s平面和Z平面的变换.虚轴映射为单位圆,与虚轴呈一定夹角的过原点射线映射为一对数螺线,所有过原点的射线映射为过实轴上1和0点的一族对数螺线,其螺旋趋向于无穷远,可能与太极s线的形成有关——不过原点的射线也对应对数螺线,其螺旋中心也不在原点。精细结构常数对应了等角螺旋的对应角度,其级数的收敛性与该常数的存在有关系。电子和质子耦合常数反应了两个不同等角螺旋尺度间的联系角度。
ln(1+Z)这一个表达式在Z的模趋近于零时其等价于Z,其在Z的模远远大于1时相当于lnZ,而lnZ恰好是Z变换和拉普拉斯变换即s变换的映射关系式(该变换可以把同心圆或螺旋型结构映射为平行直线,在锻炼过程中多种直线结构的形成可能与此有关)。前者暗示该表达式在极微观满足量子化和离散特征,在极宏观体现连续性的拉普拉斯变换特征,而在正常功能和状态下则满足人体一般器官的响应特征即无论视觉、听觉还是感觉的取对数的动态范围压缩特征,如对数变换、傅立叶频谱动态范围的压缩,频谱图均值的计算方法。因此,可以推断,该公式是一个普适性公式,反映了人体乃至宇宙的某种本质性质。
)。
(注:附设六脉乃是外设先天,先天脉和实位脉处对应为极点,而其零点处于虚幻脉上,其单位圆在内太极边界,若以外为内,则其零极点恰好在单位圆内,为虚位太极相关最小相位系统,给定频谱分布的最小相位系统是唯一的,因人本属阴实,故初始立位因地,其锻炼首在虚位太极相关最小相位系统的锤炼。而初始在相当长一段时间内物质时空分布结构满足中心之丹区乃真空零位所属,内12正经营气关乎正物质骨骼血肉结构,藏精而起亟,外卫气为弥散负物质场,卫外而为固。乃是零藏于中,阴凝于内,阳散于外的基本格局,因万物负阴而抱阳,照理说其丹区所抱之物乃使得丹区阴阳所属为阳,但由于此区本存为阴,阴阳叠加而实为零,附设六脉之时,外为先天为阳,中为实位为阴,内辅虚幻为零乃是此基本时空分布结构的深化。丹区中零结构乃阴阳配比两均,恰好对应拉普拉斯变换所对应s域,为果地,法无为——其全通结构的零极点分布乃关于直角坐标轴对称而互为镜像共轭——三轴结构作为基本坐标轴只有果地才存在,而其外阳内阴分布格局恰好对应Z变换所对应Z域,为因地,乃有作——在因地果地任意直线映射为等角螺旋线或同心圆,所谓“始于有作人未识,及至无为众方知”。之所以如此,乃是因地乃经典物理作用层次,其粒子粒度较大,整体规律遵循差分方程之离散可数形式,故与Z变换关系密切,量子化过程乃类似等间隔抽样形成序列一样,其本与谐振腔和驻波也能建立密切关联,普朗克最初从黑体辐射谱解释引入量子化理论时就是基于谐振腔和驻波引入的,人体Z变换规律的存在必然与谐振腔与驻波机制密切相关;而果地乃精微物理场层次,其作用精微,整体规律遵循微分方程之连续无间形式,故与拉普拉斯变换关系密切。由于正负物质的交互作用所导致的波动性,其整体作用场至少在二阶以上,交互作用使得它们本质上都与傅立叶变换关系密切,存在Z变换和拉普拉斯变换的自然物理过程,可将差分和微分规律直接转化为有理多项式形式表达的系统函数而与多项式求根过程也建立密切联系。在非线性系统稳定性研究理论中,平衡点的稳定性都转化为零点稳定性来讨论,则与拉格朗日点关系密切的脉轮分布于人体中轴中枢,乃对应人体之零点所在。而穴位由于都分布于体表,且其深度都差不多,类似于奇异眼点,则对应人体的各个极点。零极点的调整可以关涉人体系统的整体功能,所以可以调百病、决生死。就果地来看,人体皮肤为内外分野的关键所在,不论是穴位对应的对称极点分布,还是脉轮对应的零点都在皮肤包络区域之内,恰对应零极点都在单位圆内的最小相位系统。进一步推广到太极中,太极两眼对应两极点,类似洛仑兹吸引子那样,而中宫乃对应零点,外圆对应单位圆为电磁波的通道,因此也是最小相位系统。在高级阶段的大练形中,应该首注重果地实位太极的最小相位系统综整。)
对数螺线还可使用黄金矩形构建(注:黄金矩形对应的对数螺线其极径和螺旋切线角度为72.968.而对数螺旋角度取黄金角137.5°的时侯,所绘制出的那条对数螺线就叫做黄金对数螺线。圆就是伸缩率为1的等角螺旋,其角度为90度.太极外周临界区边界为圆,双s线为极点在圆周的等角螺线,均采用此完美曲线,这样类似搅拌的刀具,可以跟拌材充分作用。由于目前搅拌设备中,大多采用直杆式搅拌叶片,有物料粘筒壁、粘叶片、磨损大、能耗高等缺点,而对数螺线叶片能正好克服以上缺点)
1.宇宙微波背景辐射温度和精细结构常数:水的沸点是100摄氏度,或者说是373.15度绝对温度。拿这个温度乘以精细结构常数,也就是137.03599911的倒数,结果是多少呢?连小学生都可以算出来,结果是:
T = 373.15 / 137.03599911 = 2.723007K
本女算出的准确的宇宙微波背景辐射温度,是多少呢? 是 T = 2.7224 K。
大家注意,这两个数字何其相似?相差仅仅万分之二。巧合吗?水的沸点乘以精细结构常数,恰好等於CMB的温度,仅仅相差万分之二,这个巧合是否太巧了点?
方舟の女
2. 137.5/360=0.382=1-0.618
3.360实际上是洛书方阵行列式的值,而洛书与黄金分割也密切相关,精细结构常数与常温常压下水的沸点以及微波背景辐射中心温度的关系暗示了世界深刻的统一性,同时水的折射率为4/3,恰与弦图和黄金分割关系密切)。
自然现象
鹦鹉螺的贝壳像对数螺线
菊的种子排列成对数螺线
鹰以对数螺线的方式接近它们的猎物
昆虫以对数螺线的方式接近光源
蜘蛛网的构造与对数螺线相似
旋涡星系的旋臂差不多是对数螺线。银河系的四大旋臂的倾斜度约为12°(注:与24节气,15和60都有密切关系)。
低气压(热带气旋、温带气旋等)的外观像对数螺线
历史
对数螺线是1638年经笛卡尔引进的,后来瑞士数学家雅各·伯努利曾详细研究过它,发现对数螺线的渐屈线和渐伸线仍是对数螺线,极点在对数螺线各点的切线仍是对数螺线,等等。伯努利对这些有趣的性质惊叹不止,竟留下遗嘱要将对数螺线画在自己的墓碑上,并附词“纵使改变,依然故我”(eademmutata resurgo)——对数;螺线的不变性。可惜雕刻师误将阿基米德螺线刻了上去。
曾看过这样一则谜语:“小小诸葛亮,稳坐军中帐。摆下八卦阵,只等飞来将。”动一动脑筋,这说的是什么呢?原来是蜘蛛,后两句讲的正是蜘蛛结网捕虫的生动情形。我们知道,蜘蛛网既是它栖息的地方,也是它赖以谋生的工具。而且,结网是它的本能,并不需要学习。
你观察过蜘蛛网吗?它是用什么工具编织出这么精致的网来的呢?你心中是不是有一连串的疑问,那么下面就让我来慢慢告诉你吧。在结网的过程中,功勋最卓著的要属它的腿了。
首先,它用腿从吐丝器中抽出一些丝,把它固定在墙角的一侧或者树枝上。然后,再吐出一些丝,把整个蜘蛛网的轮廓勾勒出来,用一根特别的丝把这个轮廓固定住。为继续穿针引线搭好了脚手架。它每抽一根丝,沿着脚手架,小心翼翼地向前走,走到中心时,把丝拉紧,多余的部分就让它聚到中心。从中心往边上爬的过程中,在合适的地方加几根辐线,为了保持蜘蛛网的平衡,再到对面去加几根对称的辐线。一般来说,不同种类的蜘蛛引出的辐线数目不相同。丝蛛最多,42条;有带的蜘蛛次之,也有32条;角蛛最少,也达到21条。同一种蜘蛛一般不会改变辐线数。
到目前为止,蜘蛛已经用辐线把圆周分成了几部分,相临的辐线间的圆周角也是大体相同的。现在,整个蜘蛛网看起来是一些半径等分的圆周,画曲线的工作就要开始了。蜘蛛从中心开始,用一条极细的丝在那些半径上作出一条螺旋状的丝。这是一条辅助的丝。然后,它又从外圈盘旋着走向中心,同时在半径上安上最后成网的螺旋线。在这个过程中,它的脚就落在辅助线上,每到一处,就用脚把辅助线抓起来,聚成一个小球,放在半径上。这样半径上就有许多小球。从外面看上去,就是许多个小点。好了,一个完美的蜘蛛网就结成了。
让我们再来好好观察一下这个小精灵的杰作:从外圈走向中心的那根螺旋线,越接近中心,每周间的距离越密,直到中断。只有中心部分的辅助线一圈密似一圈,向中心绕去。小精灵所画出的曲线,在几何中称之为对数螺线。
对数螺线又叫等角螺线,因为曲线上任意一点和中心的连线与曲线上这点的切线所形成的角是一个定角。大家可别小看了对数螺线:在工业生产中,把抽水机的涡轮叶片的曲面作成对数;螺线的形状,抽水就均匀;在农业生产中,把轧刀的刀口弯曲成对数螺线的形状,它就会按特定的角度来切割草料,又快又好。
对数螺旋线有什么特点?在物理上用什么应用?
和其他物理量有什么关系?
对数螺旋线有什么特点?在物理上用什么应用 ?和其他物理量有什么关系?
早在2000多年以前,古希腊数学家阿基米德就对螺旋线进行了研究。公元1638年,著名数学家笛卡尔首先描述了对数螺旋线,并列出了螺旋线的解析式。这种螺旋线有很多特点,其中最突出的一点则是它的形状,无论你把它放大或缩小都不会改变。就像我们不能把角放大或缩小一样。
当我们观察着园蛛,尤其是丝光蛛和条纹蛛的网时,我们会发现它的网并不是杂乱无章的,那些辐排得很均匀,每对相邻的辐所交成的角都是相等的;虽然辐的数目对不同的蜘蛛而言是各不相同的,可这个规律适用于各种蜘蛛(注:中间辐状线对应柱形波导,而轮状等角线对应环形波导)。
我们已经知道,蜘蛛织网的方式很特别,它把网分成若干等份,同一类蜘蛛所分的份数是相同的。当它安置辐的时候,我们只见它向各个方向乱跳,似乎毫无规则,但是这种无规则的工作的结果是造成一个规则而美丽的网,像教堂中的玫瑰窗一般。即使他用了圆规、尺子之类的工具。没有一个设计家能画出一个比这更规范的网来。
我们可以看到,在同一个扇形里,所有的弦,也就是那构成螺旋形线圈的横辐,都是互相平行的,并且越靠近中心,这种弦之间的距离就越远。每一根弦和支持它的两根辐交成四个角,一边的两个是钝角,另一边的两个是锐角。而同一扇形中的弦和辐所交成的钝角和锐角正好各自相等——因为这些弦都是平行的。
不但如此,凭我们的观察,这些相等的锐角和钝角,又和别的扇形中的锐角和钝角分别相等,所以,总的看来,这螺旋形的线圈包括一组组的横档以及一组组和辐交成相等的角。
这种特性使我们想到数学家们所称的“对数螺线”。这种曲线在科学领域是很著名的。对数螺线是一根无止尽的螺线,它永远向着极绕,越绕越靠近极,但又永远不能到达极。即使用最精密的仪器,我们也看不到一根完全的对数螺线。这种图形只存在科学家的假想中,可令人惊讶的是小小的蜘蛛也知道这线,它就是依照这种曲线的法则来绕它网上的螺线的,而且做得很精确。
这螺旋线还有一个特点。如果你用一根有弹性的线绕成一个对数螺线的图形,再把这根线放开来,然后拉紧放开的那部分,那么线的运动的一端就会划成一个和原来的对数螺线完全相似的螺线,只是变换了一下位置。这个定理是一位名叫杰克斯.勃诺利的数学教授发现的,他死后,后人把这条定理刻在他的墓碑上,算是他一生中最为光荣的事迹之一。
那么,难道有着这些特性的对数螺线只是几何学家的一个梦想吗?这真的仅仅是一个梦、一个谜吗?那么它究竟有什么用呢?
它确实广泛的巧合,总之它是普遍存在的,有许多动物的建筑都采取这一结构。有一种蜗牛的壳就是依照对数螺线构造的。世界上第一只蜗牛知道了对数螺线,然后用它来造壳,一直到现在,壳的样子还没变过。
在壳类的化石中,这种螺线的例子还有很多。现在,在南海,我们还可以找到一种太古时代的生物的后代,那就是鹦鹉螺。它们还是很坚贞地守着祖传的老法则,它们的壳和世界初始时它们的老祖宗的壳完全一样。也就是说,它们的壳仍然是依照对数螺线设计的。并没有因时间的流逝而改变,就是在我们的死水池里,也有一种螺,它也有一个螺线壳,普通的蜗牛壳也是属于这一构造。
可是这些动物是从哪里学到这种高深的数学知识的呢?又是怎样把这些知识应用于实际的呢?有这样一种说法,说蜗牛是从蠕虫进化来的。某一天,蠕虫被太阳晒得舒服极了,无意识地揪住自己的尾巴玩弄起来,便把它绞成螺旋形取乐。突然它发现这样很舒服,于是常常这么做。久而久之便成了螺旋形的了,做螺旋形的壳的计划,就是从这时候产生的。
但是蜘蛛呢?它从哪里得到这个概念呢?因为它和蠕虫没有什么关系。然而它却很熟悉对数螺线,而且能够简单地运用到它的网中。蜗牛的壳要造好几年,所以它能做得很精致,但蛛网差不多只用一个小时就造成了,所以它只能做出这种曲线的一个轮廊,管不精确,但这确实是算得上一个螺旋曲线。是什么东西在指引着它呢?除了天生的技巧外,什么都没有。天生的技巧能使动物控制自己的工作,正像植物的花瓣和小蕊的排列法,它们天生就是这样的。没有人教它们怎么做,而事实上,它们也只能作这么一种,蜘蛛自己不知不觉地在练习高等几何学,靠着它生来就有的本领很自然地工作着。
我们抛出一个石子,让它落到地上,这石子在空间的路线是一种特殊的曲线。树上的枯叶被风吹下来落到地上,所经过的路程也是这种形状的曲线。科学家称这种曲线为抛物线。
几何学家对这曲线作了进一步的研究,他们假想这曲线在一根无限长的直线上滚动,那么它的焦点将要划出怎样一道轨迹呢?答案是:垂曲线。这要用一个很复杂的代数式来表示。如果要用数字来表示的话,这个数字的值约等于这样一串数字+1/1+1/1*2+1/1*2*3+1/1*2*3*4+……的和。
几何学家不喜欢用这么一长串数字来表示,所以就用“e”来代表这个数。e是一个无限不循环小数,数学中常常用到它。
这种线是不是一种理论上的假想呢?并不,你到处可以看到垂曲线的图形:当一根弹性线的两端固定,而中间松驰的时候,它就形成了一条垂曲线;当船的帆被风吹着的时候,就会弯曲成垂曲线的图形;这些寻常的图形中都包含着“e”的秘密。一根无足轻重的线,竟包含着这么多深奥的科学!我们暂且别惊讶。一根一端固定的线的摇摆,一滴露水从草叶上落下来,一阵微风在水面拂起了微波,这些看上去稀松平常、极为平凡的事,如果从数学的角度去研究的话,就变得非常复杂了。
我们人类的数学测量方法是聪明的。但我们对发明这些方法的人,不必过分地佩服。因为和那些小动物的工作比起来,这些繁重的公式和理论显得又慢又复杂。难道将来我们想不出一个更简单的形式,并使它运用到实际生活中吗?难道人类的智慧还不足以让我们不依赖这种复杂的公式吗?我相信,越是高深的道理,其表现形式越应该简单而朴实。
在这里,我们这个魔术般的“e”字又在蜘蛛网上被发现了。在一个有雾的早晨,这粘性的线上排了许多小小的露珠。它的重量把蛛网的丝压得弯下来,于是构成了许多垂曲线,像许多透明的宝石串成的链子。太阳一出来,这一串珠子就发出彩虹一般美丽的光彩。好像一串金钢钻。“e”这个数目,就包蕴在这光明灿烂的链子里。望着这美丽的链子,你会发现科学之美、自然之美和探究之美。
几何学,这研究空间的和谐的科学几乎统治着自然界的一切。在铁杉果的鳞片的排列中以及蛛网的线条排列中,我们能找到它;在蜗牛的螺线中,我们能找到它;在行星的轨道上,我们也能找到它,它无处不在,无时不在,在原子的世界里,在广大的宇宙中,它的足迹遍布天下。
这种自然的几何学告诉我们,宇宙间有一位万能的几何学家,他已经用它神奇的工具测量过宇宙间所有的东西。所以万事万物都有一定的规律。我觉得用这个假设来解释鹦鹉螺和蛛网的对数螺线,似乎比蠕虫绞尾巴而造成螺线的说法更恰当。