直观解释-卷积 斜二测直观图
幼童背古诗文的感觉,来自数学系的同学觉得卷积是小菜一碟,随手就写出卷积定义
F(t)= ∫f(τ)g(t-τ)dτ (积分限从-∞ 到+∞)
并指出这是含参积分,t是参数,觉得浅而又显,无须解释。而部分(例如来自工科和医学专业的)选修数据挖掘的学生,还是觉得稍有点难,说:相关公式能默写、能推导、能通过考试,自己还是觉得不踏实,觉得没有真正理解;发明者是怎样想出来的?有何直观背景?用在哪些场合?
一言以蔽之,在逻辑上认可,而直观上迷茫。好像很小的时候背诵古诗文那种感觉。
鉴于数学老师已经讲解过理论推导,作为一种补充,这里用生活实例做一些直观解释,给出一个大框架和物理直观,为叙述简单,忽略一些细节。需要说明,直观的解释仅用于辅助理解,不能取代严格的描述和证明。 几个时髦(但可能不很贴切)的例子.
辐射:设某核电站事故中,某工作人员每天到抢险现场工作T分钟,接受一定剂量的辐射,辐射会自然地衰减,如此工作N天,总的辐射量用什么计算工具来(粗略地)估计?回答:可以用卷积。
服碘:某人为了防辐射,自己找来碘片,每天口服若干,体内碘残量会随人体代谢衰减,N天后体内积累的碘残量如何(粗略地)估计?还是卷积;(后面科普部分将给出简单的推导过程);
补盐:某人为了反辐射,抢购来碘盐,每餐口服若干,体内盐残量会随人体代谢衰减。N天后体内积累的盐量和碘残量如何(粗略地)估计?可以用卷积;
空袭:某多国部队每隔N小时对桀骜不驯的某地区或国家实行间歇性空中打击,每次打击后,其物理破坏和心理震慑作用会随时间衰减(例如,被打方会组织抢修,心里承受度增加等等),如此进行M天后,累积的打击总效果如何(粗略地)估计?还是可以用卷积。
还有其他例子,如长期服药的血药浓度,长期吸入污染物在人体内的积累,吸烟或喝咖啡的积累效应,多次喷洒农药的残留量,等等,也可以用卷积来估计。
上面的有些例子可能不很贴切,有几个原因:,
(a)卷积是积分运算,处理对象要求是可以积分的函数,在工程中,一般对应于连续现象而不是离散对象;把离散对象当做连续的现象处理,只能粗略估计。
(b)社会问题,政治问题比较复杂,即使加上很多假定,也只是框架性的估算。
但是,有计算、有依据的估计总比算命先生的神仙数字可信。
难懂之因:为了数学美,拆卸了脚手架。教科书书常用“定义—定理”的体系,先给出数学定义,然后给出若干性质, 从公式 到公式,逐步推导。有的教科书采用用信号“反褶、平移、相乘、积分”给出几何解释,属于用数学解释数学,提问者不满足这种解释。
这不是当年发明卷积的大师们的“需求–猜想—发现—证明—应用”的路径,大师们建设好“卷积”大厦后,为了数学美,拆卸了脚手架,现在人们看到的是炼成的钢铁,看不出钢铁是怎样炼成的。造成了部分非数学专业学生的一个难点。 一次输液引出的班门弄斧一次偶感风寒,服药未愈,转作静脉滴注,无聊地望着那药液慢腾腾地滴,忽然灵感一闪:
(1)这是一个可离散观察的连续过程。透明玻璃管构成了可视化的界面,能离散 地对药滴计数,而下面是相对稳定的液柱高度,保证了药液连续(有点脉动)地注入静脉,比较适合积分处理;(口服和注射,就相对离散,结果就更粗略一些)。
(2)药动学有个术语血药浓度,怎样来保证血药浓度在安全阈值之下,又在有效阈值之上呢?
立刻在草稿本上写划,哇噻,原来可以用卷积!而且只需要简单的积分知识。于是,对此常问难点,有了一个易懂的直观解释。正是:小恙滴注,焉知非福?
下面将叙述这次双重的(数学与医学)的班门弄斧,疏漏之处,请专家指正。
静脉滴注与体内药物浓度为简单又不失一般性,给出下列符号和假定:
从t=0开始,每隔τ秒,输入药物一次(离散化是为了简单);药量随时间变化, 在时刻t时的那次给药量为f(t),关注的时刻点为t=0, τ,2τ,3τ,…
一滴药液的在体内衰减规律药物以多种方式代谢(衰减),按假设,在τ1时的那滴药液含药量f(τ1),当时间流逝到t时刻,假设那一滴药物在体内的残量是f(τ1)* g(t,τ1),其中g(t,τ1)称为衰减因子函数,怎么找出衰减因子的具体结构呢?药动学中有两种衰减方式:(a)零级动力学消除,即恒速消除,如乙醇血浓>0.05mg/ml时,较简单;(b)一级动力学消除,即恒比消除,消除速度与血药浓度成正比,如乙醇血浓<0.05mg/ml时的衰减规律,这也类似于简单热传导中散热速度与温差成正比。设在τ时刻,输入一滴药,药量为f(τ),根据一级动力学消除,建立最简单的微分方程;dg/dt=-kg考虑t=τ时不衰减的初始条件,容易求得g=e-k(t-τ),为下面方便,把衰减因子改写为g(t-τ)=e-k(t-τ)于是,在τ>0时,给药一次,药量为f(τ),当t为2τ时,血药浓度降到f(τ)*g(t-τ)= f(τ)*g(τ)= f(τ)(1/ek )当t为3τ时,血药浓度降到 f(τ)*g(t-τ) = f(τ)*g(2τ)= f(τ)(1/e2k ) 当t为4τ时,血药浓度降到f(τ)*g(t-τ) = f(τ)*g(3τ)= f(τ)(1/e3k )可见,只给药一滴,血药浓度衰减很快,难以治疗那种要与病毒或细菌打持久战的疾病。多次密集给药 或连续给药用τ置换让上面的T,让τ动起来,令τ依次取τ1, τ2,….. τn,则N多次密集给药后,当时间流逝到t时的血药浓度是∑jf(τj)*g(t-τj) ( 对 j=1,2,…..n求和)前面说过,静脉滴注是一个可离散观察的连续过程。,所以,上面的和式可写为积分形式,即卷积F(t)= ∫f(τ)g(t-τ)dτ曲线光滑工具当f(τ)是脉冲函数时(例如考察一滴药引发的血药浓度),曲线显得不够光滑,而卷积F(t)是多次脉冲的(平均)累积效应,或可视为是一种加权平均,所以,F(t)的曲线就光滑一些,所以,医生要考察N小时的滴注效果,而不察几分钟或一滴药的效果。选择适当的g(t-τ)函数,(例如,3/2次方衰减型、平方衰减性、指数衰减型、周期兼指数衰减型,...),可用卷积作为突出不同加权方式的曲线光滑工具。比较光滑、不是陡升陡降的血药浓度曲线表明,静脉滴注能较好地控制血药浓度;这大概也是有些医生和病人喜欢它的原因;当然,如果过分依赖静脉滴注,则减少了免疫系统的锻炼机会,所以很多医生主张,如果服药能解决问题,就不要滴注。更多的应用实例卷积的结果可辅助人们定量地协调脉动式输入 f(τ) 和 衰减g(t-τ) 这一对矛盾,使得累积效应F(t)= ∫ f(τ)g(t-τ)dτ 在控制范围内。例如,研究干预规则,(例如,叶酸干预新生儿脑畸形缺陷),干预为f(τ),复杂的衰减g(t-τ),总的干预效果可否用卷积来粗略描述?
再例如,制定正确的给药剂量和周期,例如照医嘱摄入碘或盐;
又例如,制定空中打击方案的强度和频度,常识告诉人们,足够的强度和密度才能有效打击。卷积作为工具,或许可定量计算出最经济打击强度和密度。而被打击的一方,可计算出足够的衰减因子,使得能在被轰炸后有效恢复;战争是铁血与智慧的较量,当双方的铁与血差不多时,如《孙子.计篇》所说,“多算胜,少算不胜”,而卷积只不过在众多的计算方法基础上,增加了一个算法,仅此而已,最近,在这个不平静的世界上,有一场空袭和反空袭的较量,不知持续多久?10天,100天,还是200天?研究军事的专家或许可用卷积做个模型。武侠小说中,有时候看见一方逐步投入兵力,使用添油战术,好像是多次服药,每次都没有服够量,血药浓度低于有效门限。被逐次歼灭。卷积并不神秘,它有其退化版,例如水池一面进水,一面放水,求瞬时水量。当进水匀速且放水速度服从零级或一级动力学消除规律时,偶尔也作为中小学生的数学奥赛题,基础好的聪明学生能用初等方法计算。但当进水是1+sin(t)这样的脉动函数,或更复杂的函数时,就只能用卷积了。卷积是一个老技术,对某些专业的学生是一个难点,“老技术+新讲法+直观解释”使其容易被初学者接受。这里要强调,直观解释不能取代严格的数学推理,这里的班门弄斧。不能取代数学老师的正规训练。。
更多阅读
转载 习作课堂 小学二年级看图写话《植树》作文教案
原文地址:【习作课堂】小学二年级看图写话《植树》作文教案作者:浩友玉汝【习作课堂】小学二年级看图写话《植树》作文教案 仔细观察图画《植树》,看看图上画的是什么季节,都有谁,他们在干什么。特别要注意近处两个人的动作。先说一说
卷积转 卷积神经网络
卷积这个东东是“信号与系统”中论述系统对输入信号的响应而提出的。因为是对模拟信号论述的,所以常常带有繁琐的算术推倒,很简单的问题的本质常常就被一大堆公式淹没了,那么卷积究竟物理意义怎么样呢?卷积表示为y(n) = x(n)*h(n)使用
图像处理中的卷积与模板 图像处理 卷积
图像处理中的卷积与模板2011-04-25 11:16转载自 deepthink_2010最终编辑 shuting_guo1.使用模板处理图像相关概念:模板:矩阵方块,其数学含义是一种卷积运算。卷积运算:可看作是加权求和的过程,使用到的图像区域中的每个像素分别与卷积核(
转载 安装系统·硬盘安装最直观·图形界面 平面图形的直观图
原文地址:【安装系统·硬盘安装最直观·图形界面】作者:电脑人人有①所谓硬盘安装操作系统,是在现有操作系统的图形界面中直接设置、安装系统,这样比较直观。先以ISO后缀安装文件为例,这是光盘镜像文件,如果使用刻录机将其刻录成光盘,也可
转载 图像处理卷积 作者太棒了 图像卷积
原文地址:图像处理(卷积)作者太棒了作者:卓越李子图像处理-线性滤波-1 基础(相关算子、卷积算子、边缘效应)这里讨论利用输入图像中像素的小邻域来产生输出图像的方法,在信号处理中这种方法称为滤波(filtering)。其中,最常用的是线性滤波:输出像