口诀:百位数乘以百位数写高位;
百位数和个位数相乘的积,扩大两倍写中间;
个位数乘个位写后面;
大于100要进位。
第五章一位数乘任意多位数
第1节2的乘法运算
方法:凡2乘以5以下的数字,应直接写出它的倍数来,遇到大于4的数字如5、6、7、8、9等,都要在前一位上加一个1.在算前一位(即高位)时,必须要看后位(即低位)是否大于5,决定有无进位,大者在前位上加1.
因为2×5=10(个位数是0) 2×6=12(个位数是2) 2×7=14(个位数是4)
2×8=16(个位数是6) 2×9=18(个位数是8)
口诀:1、2、3、4只写倍,后数大5或等于5前加1。5个为0、6个为2、7个为4、8个为6、9个为8要记牢,算前看后莫忘掉。
第2节 3的乘法运算
方法:3的进位律是3的循环小数,无论3后面有几个3,但最后只要出现4或比4大的数,则前边就要进1,无论3循环到几个位数,最后是比3小的数字,都按不进位计算。
67也是一样,大于6的循环小数就进2,即6以后无论循环几位,只要后位有7或比7大的数就进2,6的循环小数是6或小于6以下都按不进2计算,但不进2必能进1。
数字上点圆点的,表示该数是循环小数,而后位数则表示无论前数循环几位,而见到后数即按大者计算,无论循环到几位不见后数,都按小于此数计算。
口诀:1、2、3数直写倍,后大34前加1,大于67要进2,循环小数要记准:4个为2;5个为5;6个为8;7个为1;8个为4;9个为7.算前看后莫忘记。
(3的乘法运算) (4的乘法运算)
第3节4的乘法运算
方法:凡是用4乘1和2时,应直接写出它的倍数。4的进位律是大25进1,大50进2,大75进3。但必须记住:任何偶数乘以4时,其本个位都是它的补数。如见4是6;见6是4;见2是8;见8是2。而任何奇数乘以4时,其本个位都是它的凑数。如:1+4=5;3+2=5;5+0=5;7+8=15(个位是5);9+6=15(个位是5)。
口诀:1数2数直写倍,后大25前加1,大于5数要进2,后大75将3进,偶数个位皆互补,奇数个位凑5齐。
第4节5的乘法运算
方法:根据乘法的性质原理:前面因数缩小几倍,后面因数扩大几倍,其积不变。凡是任何数乘以5时,先将前面因数缩小两倍,再乘后面因数5,扩大两倍变成10计算起来,就更简便了。
口诀:任何数乘以5,等于它的半数加零。
例:368×5=(368÷2)×(5×2)=184×10=1840
第5节6的乘法运算
方法:因为6是3的两倍,那么3的进位律是大34进1,大67进2。而6的进位律却是大34进2,大67进4。
口诀:167数要进1;后大34将2进;大5一定要进3;后大67将4进;834数要进5;循环小数要记准。
(6的乘法运算) (7的乘法运算)
第6节7的乘法运算
方法:7的进律较难记,必须从中找窍门。7的进位律是:
大于142857进1;大于285714进2;
大于428571进3;大于714285进5;大于857142进6。
口诀:1428续57。进2、14搬后位。进3,将头按在尾。进4,57移前位。进5,将尾接在首。进6,分半前后移。偶数本个皆2倍,1-7;3-1;5本身;7-9;9-3要记牢,两位三位先相比。
第7节 8的乘法运算
方法:4的两倍,那么4的进位律是大25进1;大50进2;大75进3;而8的进位律是大25进2;大5进4;大75进6。本身加5本个同的意思是:个位数相同。如:
1+5=6(1和6个位相同是8) 2+5=7(2和7个位相同是6)
3+5=8(3和8个位相同是4) 4+5=9(4和9个位相同是2) 5+5=10(5的个位是0)
口诀:125数要进1,后大25将2进。375数要进3,后数大5将4进。625数应进5,后大75将6进。875数要进7,本身加5本个同。1、6个8;2、7-6;3、8个4;4、9-2。
第8节9的乘法运算
方法:9乘任何数时,要看两位数,才能决定是进几,前位数值小于后位数值时,前位的数值是几则进几(照数进)。如果前位数值大于后位数时,无论是大几,在前位上只减一个1,余数即是应进的数,即称为前大于后要减1。
口诀:前小于后照数进,前大于后要减1。各数本个皆互补,算到末尾必减1。
周根项速算大师乘法口诀
这几天在电视上看了速算大师周根项教给学生们的乘法口诀速算方法,个人觉的很有用,值得和大家分享一下:
两位数相乘,在十位数相同、个位数相加等于10的情况下,如62×68=4216
计算方法:6×(6+1)=42(前积),2×8=16(后积)。
一分钟速算口诀中对特殊题的定理是:
任意两位数乘以任意两位数,只要魏式系数为“0”所得的积,一定是两项数中的尾乘尾所得的积为后积,头乘头(其中一项头加1的和)的积为前积,两积相邻所得的积。
如(1)33×46=1518(个位数相加小于10,所以十位数小的数字3不变,十位大的数4必须加1)
计算方法:3×(4+1)=15(前积),3×6=18(后积)
两积组成1518
如(2)84×43=3612(个位数相加小于10,十位数小的数4不变 十位大的数8加1)
计算方法:4×(8+1)=36(前积),3×4=12(后积)
两积相邻组成:3612
如(3)48×26=1248
计算方法:4×(2+1)=12(前积),6×8=48(后积)
两积组成:1248
如(4)245平方=60025
计算方法24×(24+1)=600(前积),5×5=25
两积组成:60025
ab×cd魏式系数=(a-c)×d+(b+d-10)×c
“头乘头,尾乘尾,合零为整,补余数。”
1.先求出魏式系数
2.头乘头(其中一项加一)为前积 (适应尾相加为10的数)
3.尾乘尾为后积。
4.两积相连,在十位数上加上魏式系数即可 。
如:76×75,87×84吧,凡是十位数相同个位数相加为11的数,它的魏式系数一定是它的十位数的数 。
如:76×75魏式系数就是7,87×84魏式系数就是8。
如:78×63,59×42,它们的系数一定是十位数大的数减去它的个位数。
例如第一题魏式系数等于7-8=-1,第2题魏式系数等于5-9=-4,只要十位数差一,个位数相加为11的数一律可以采用以上方法速算。
例题1 76×75, 计算方法: (7+1)×7=56 5×6=30两积组成5630,然后十位数上加上7最后的积为5700。
例题278×63,计算方法:7×(6+1)=49,3×8=24,两积组成4924,然后在十位数上2减去1,最后的积为4914
下面是摘抄了几节实例:
如(1)33×46=1518(个位数相加小于10,所以十位数小的数字3不变,十位大的数4必须加1)
计算方法:3×(4+1)=15(前积),3×6=18(后积)两积组成1518
如(2)84×43=3612(个位数相加小于10,十位数小的数4不变 十位大的数8加1)
计算方法:4×(8+1)=36(前积),3×4=12(后积)
两积相邻组成:3612
如(3)48×26=1248
计算方法:4×(2+1)=12(前积),6×8=48(后积)两积组成:1248
如(4)245平方=60025
计算方法24×(24+1)=600(前积),5×5=25
两积组成:60025
(一)十几与十几相乘
十几乘十几,
方法最容易,
保留十位加个位,
添零再加个位积。
证明:设m、n 为1 至9 的任意整数,则
(10+m)(10+n)
=100+10m+10n+mn
=10〔10+(m+n)〕+mn。
例:17×l6
∵10+ (7+6)=23(第三句),
∴230+7×6=230+42=272(第四句),
∴17×16=272。
(二)十位数字相同、个位数字互补(和为10)的两位数相乘
十位同,个位补,
两数相乘要记住:
十位加一乘十位,
个位之积紧相随。
证明:设m、n 为1 到9 的任意整数,则
(10m+n)〔10m+(10-n)〕
=100m(m+1)+n(10-n)。
例:34×36
∵(3+1)×3=4×3=12(第三句),
个位之积4×6=24,
∴34×36=1224。 (第四句)
注意:两个数之积小于10 时,十位数字应写零。
(三)用11去乘其它任意两位数
两位数乘十一,
此数两边去,
中间留个空,
用和补进去。
证明:设m、n 为1 至9 的任意整数,则
(10m+n)×(10+1)=100m+10(m+n)+n。
例:36×ll
∵306+90=396,
∴36×11=396。
注意:当两位数字之和大于10 时,要进到百位上,那么百位数数字就成为m+1,
如:
84×11
∵804+12×10=804+120=924,
∴84×11=924。