常用的信息分析方法分为两大类:定性分析与定量分析。
(一)定性分析
定性分析即通过专家知识、经验,对事物现状的分析以及未来发展趋势的预测。常用的定性分析法有头脑风暴法、德尔菲调查法、主观概率法、相互影响矩阵分析等。定性分析法发展至今,经过不断完善,已广泛运用于各类信息分析之中。定性分析最大的优点是,能充分运用专家的知识、经验,从而对一些无法收集数据的分析预测活动进行评判。定性分析方法也是一种科学的方法。首先专家的知识、经验是一种隐性知识,是专家在长期大量的实践中形成的经验总结,是建立在客观科学基础之上的认识,如某行业领域资深专家对行业发展趋势的判断,这是他对行业发展全面客观的认识基础上作出的推断,这种推断具有一定的合理性。其次,某个专家的认识由于受到自身学术行业背景、主观判断等限制,其看法具有片面性,但综合该领域的专家认识,就能比较全面合理的作出定性的判断,从这个角度这种方法也是合理的。最后,定性分析由于受到主观因素影响,而且只能提供定性的结论,因此针对具体的微观的需要作出量化决策的问题,就需要通过定量分析。值得一提的是,定量分析由于客观具体,用数据和科学模型说话,在某些方面更具有说服力,但是由于应用时受到诸多条件限制,有时候得出的模型和结论未必合理,切不可盲目迷信复杂的模型。定性分析与定量分析需要相互结合使用,才能做出准确科学的结论。
(二)定量分析
定量分析基本上就是统计的内容了,相关分析、回归分析、主成分与因子分析、独立性检验(卡方检验)、分类与聚类等。
数理统计最主要的几个分布函数:正态分布和t分布、F分布、卡方分布,因为回归分析里参数检验涉及到t检验和F检验问题,要知道它们到底用来做什么,有什么特性。这里简单介绍几个一直让我混淆的概念。
(1)相关分析与回归分析
两个事物之间可能存在一定的关联,如子女身高与父母身高,一般来说父母个子高子女身高也高,但两者没有必然的因果关系,那么这两者之间有关系,但不是因果关系,这就是相关分析,相关可以是线性相关也可以是非线性相关。而回归分析如,广告支出增加,销量增加,那么广告和销量之间是存在某种因果关系,可以分析广告支出对销量增加的影响,这就是回归分析。
(2)回归分析与方差分析
前面讲到回归分析,当自变量和因变量都是数值变量,即分析某个自变量的变化对因变量的影响程度就是回归分析。而方差分析也是分析自变量对因变量的影响程度,但自变量是定性变量,如分析农作物产量(因变量)与土壤种类、肥料种类、栽培方法之间是否有影响,这就是方差分析了。方差分析结论就是,这个定性变量对因变量到底有没有影响。
(3)线性回归、logistic曲线与probit曲线
线性回归就是构建一个模型方程,同回归分析,自变量和因变量都是定量变量,并且对其取值没有要求。logistic曲线与probit曲线自变量和因变量也都是定量变量,但是因变量的取值是0或1(这里讲的是二元定性选择回归)。