四大强度理论
这一理论认为引起材料脆性断裂破坏的因素是最大拉应力,无论什么应力状态,只要构件内一点处的最大拉应力σ1达到单向应力状态下的极限应力σb,材料就要发生脆性断裂。于是危险点处于复杂应力状态的构件发生脆性断裂破坏的条件是:
σ1=σb。σb/s=[σ]
所以按第一强度理论建立的强度条件为:
σ1≤[σ]。
2、最大伸长线应变理论(第二强度理论)(材料塑性屈服的强度理论):
这一理论认为最大伸长线应变是引起断裂的主要因素,无论什么应力状态,只要最大伸长线应变ε1达到单向应力状态下的极限值εu,材料就要发生脆性断裂破坏。
εu=σb/E;ε1=σb/E。由广义虎克定律得:
ε1=[σ1-u(σ2+σ3)]/E
所以σ1-u(σ2+σ3)=σb。
按第二强度理论建立的强度条件为:
σ1-u(σ2+σ3)≤[σ]。
3、最大切应力理论(第三强度理论):
这一理论认为最大切应力是引起屈服的主要因素,无论什么应力状态,只要最大切应力τmax达到单向应力状态下的极限切应力τ0,材料就要发生屈服破坏。
τmax=τ0。
依轴向拉伸斜截面上的应力公式可知τ0=σs/2(σs——横截面上的正应力)
由公式得:τmax=τ1s=(σ1-σ3)/2。
所以破坏条件改写为σ1-σ3=σs。
按第三强度理论的强度条件为:σ1-σ3≤[σ]。
4、形状改变比能理论(第四强度理论)(最大歪形能理论):
这一理论认为形状改变比能是引起材料屈服破坏的主要因素,无论什么应力
状态,只要构件内一点处的形状改变比能达到单向应力状态下的极限值,材料就要发生屈服破坏。
发生塑性破坏的条件为:
所以按第四强度理论的强度条件为:sqrt(σ1^2+σ2^2+σ3^2-σ1σ2-σ2σ3-σ3σ1)<[σ]Von mise应力Von Mises应力是基于剪切应变能的一种等效应力其值为(((a1-a2)^2+(a2-a3)^2+(a3-a1)^2)/2)^0.5其中a1,a2,a3分别指第一、二、三主应力, ^2表示平方,^0.5表示开方。 是啊!一般书上都有!等效应力,数值于屈服应力一样其大概的含义是当单元体的形状改变比能达到一定程度,材料开始屈服。随便看本塑性力学入门书都有! 后处理节点应力中x,y,z方向应力和第一、二、三主应力就不介绍了,stressintensity(应力强度),是由第三强度理论得到的当量应力,其值为第一主应力减去第三主应力。VonMises是一种屈服准则,屈服准则的值我们通常叫等效应力。Ansys后处理中"Von Mises Stress"我们习惯称Mises等效应力,它遵循材料力学第四强度理论(形状改变比能理论)。第三强度理论认为最大剪应力是引起流动破坏的主要原因,如低碳钢拉伸时在与轴线成45度的截面上发生最大剪应力,材料沿着这个平面发生滑移,出现滑移线。这一理论比较好的解释了塑性材料出现塑性变形的现象。形式简单,但结果偏于安全。第四强度理论认为形状改变比能是引起材料流动破坏的主要原因。结果更符合实际。一般脆性材料,铸铁、石料、混凝土,多用第一强度理论。考察绝对值最大的主应力。一般材料在外力作用下产生塑性变形,以流动形式破坏时,应该采用第三或第四强度理论。压力容器上用第三强度理论(安全第一),其它多用第四强度理论。vonmises等效应力就是一维屈服应力在多轴应力状态下的邓小表达,一维单轴问题处理一条曲线,那么一个屈服点就可以定义屈服行为,而多轴应力状态,有多个应力分量,问题复杂了,实在6个应力分量空间下问题,所以必须寻找一个等效量来模拟一维问题。