小学数学行程问题 行程问题中的停歇问题

小学数学行程问题

基本公式

一、相遇问题

两个运动物体作相向运动或在环形跑道上作背向运动,随着时间的发展,必然面对面地相遇,这类问题叫做相遇问题。它特点是两个运动物体共同走完整个路程。

 小学数学教材中的行程问题,一般是指相遇问题。

相遇问题根据数量关系可分成三种类型:求路程,求相遇时间,求速度。

它们的基本关系式如下:

 总路程=(甲速+乙速)×相遇时间

 相遇时间=总路程÷(甲速+乙速)

另一个速度=甲乙速度和-已知的一个速度

二、追及问题

追及问题的地点可以相同(如环形跑道上的追及问题),也可以不同,但方向一般是相同的。由于速度不同,就发生快的追及慢的问题。

根据速度差、距离差和追及时间三者之间的关系,常用下面的公式:

 距离差=速度差×追及时间

 追及时间=距离差÷速度差

 速度差=距离差÷追及时间

 速度差=快速-慢速

 解题的关键是在互相关联、互相对应的距离差、速度差、追及时间三者之中,找出两者,然后运用公式求出第三者来达到解题目的。

三、相离问题

两个运动物体由于背向运动而相离,就是相离问题。解答相离问题的关键是求出两个运动物体共同趋势的距离(速度和)。

基本公式有:

两地距离=速度和×相离时间

相离时间=两地距离÷速度和

速度和=两地距离÷相离时间

四、流水问题

  顺流而下与逆流而上问题通常称为流水问题,流水问题属于行程问题,仍然利用速度、时间、路程三者之间的关系进行解答。

  船在静水中行驶,单位时间内所走的距离叫做划行速度或叫做划力;顺水行船的速度叫顺流速度;逆水行船的速度叫做逆流速度;船放中流,不靠动力顺水而行,单位时间内走的距离叫做水流速度。各种速度的关系如下:

  (1)划行速度+水流速度=顺流速度

  (2)划行速度-水流速度=逆流速度

  (3)(顺流速度+逆流速度)÷2=划行速度

  (4)(顺流速度-逆流速度)÷2=水流速度

流水问题的数量关系仍然是速度、时间与距离之间的关系。即:速度×时间=距离;距离÷速度=时间;距离÷时间=速度。但是,河水是流动的,这就有顺流、逆流的区别。在计算时,要把各种速度之间的关系弄清楚是非常必要的。

基础题型

反映时间、速度、距离三者之间关系的应用题一般称为行程问题。行程问题的内容相当广泛,目前小学数学教材中行程问题仅涉及相向运动中的相遇问题。相遇问题是研究两个运动的物体,从两个不同的地方,沿同一条路线同时(或者不同时)出发,作相向运动。因此,它有三种基本形式:

第一是已知甲、乙的速度和相遇的时间,求距离;

总路程=(甲速+乙速)×相遇时间

第二是已知甲、乙的速度和距离,求相遇的时间;

相遇时间=总路程÷(甲速+乙速)

第三是已知距离,相遇时间和甲(或者乙)速度,求乙(或者甲)速度。

甲乙的速度和=总路程÷相遇时间

另一个速度=甲乙速度和-已知的一个速度

1一辆客车与一辆货车同时从甲、乙两个城市相对开出,客车每小时行46千米,货车每小时行48千米。3.5小时两车相遇。甲、乙两个城市的路程是多少千米?

[]46×3.5+48×3.5

=161+168

=329(千米)

(46+48)×3.5

=94×3.5

=329(千米)

答:甲、乙两个城市的路程有329千米。

[常见错误]

46×3.5+48

=161+48

=209(千米)

答:甲、乙两个城市的路程有209千米。

[分析]

这是一道相遇问题的基本题,错解中由于审题不严密,误认为只有客车行了3.5小时,货车行了48千米,两车就相遇了,因而产生了错误。如果首先理解甲、乙两城的路程就是客车与货车所行路程的和,然后分别求各自的速度与行驶的时间,就不会出现错误了。

2两地间的路程有255千米,两辆汽车同时从两地相对开出,甲车每小时行45千米,乙车每小时行40千米。甲、乙两车相遇时,各行了多少千米?

[]255÷(45+40)

=255÷85

=3(小时)

45×3=135(千米)

40×3=120(千米)

答:相遇时甲车行了135千米,乙车行了120千米。

[常见错误]

(1)255÷(45+40)

=255÷85

=3(小时)

45×3=135(千米)

答:相遇时各行了135千米。

(2)255÷(45+40)

=255÷85

=3(小时)

40×3=120(千米)

45×3=135(千米)

答:相遇时甲车行了120千米,乙车行了135千米。

[分析]

解题不完整,答非所问,这是应用题解答经常出现的一种错误,特别是对于粗心大意的学生来说,更是如此。防止粗心大意的办法是要养成检验的良好习惯。

3两地相距3300米,甲、乙二人同时从两地相对而行,甲每分钟行82米,乙每分钟行83米,已经行了15分钟,还要行多少分钟两人可以相遇?

[][3300-(82+83)×15]÷(82+83)

=[3300-165×15]÷165

=[3300-2475]÷165

=825÷165

=5(分钟)

答:还要5分钟两人可以相遇。

[常见错误]

(1)(82+83)×15÷(82+83)

=165×15÷165

=2475÷165

=15(分钟)

答:还要15分钟两人可以相遇。

(2)[3300-(82+85)×15]÷82

=[3300-165×15]÷82

=[3300-2475]÷82

=825÷82

≈10.1(分钟)

答:还要行10.1分钟两人可以相遇。

[分析]

这是一道较复杂的相遇问题,错解(1)没有求出还剩下的路程,错解(2)将剩下的路程由甲一人行走,所以两种解法都错了。防止错误的主要办法是需认真审题,理解题中已经行了多少米,还剩下多少米,剩下的路程由甲、乙两人相对行走,还要多少分钟等等。这样,用剩下的路程除以甲、乙两人的速度和,就得出还要多少分钟两人相遇。

4甲、乙两港的航程有480千米,上午10点一艘货船从甲港开往乙港,下午2点一艘客船从乙港开往甲港。客船开出12小时与货船相遇。已知货船每小时行15千米,客船每小时行多少千米?

[](480-15×4)÷12-15

=(480-60)÷12-15

=420÷12-15

=35-15

=20(千米)

答:客船每小时行20千米。

[常见错误]

(1)480÷12-15

=40-15

=25(千米)

答:客船每小时行25千米。

(2)(480-15×4)÷12

=(480-60)÷12

=420÷12

=35(千米)

练习题

1.一列客车和一列货车同时从两个车站相对开出,货车每小时行35千米,客车每小时行45千米,2.5小时相遇,两车站相距多少千米?

2.两个县城相距52.5千米,甲、乙二人分别从两城同时相对而行,甲每小时行5千米,乙每小时比甲快0.5千米,几小时后相遇?

3.甲、乙二人分别从相距110千米的两地相对而行。5小时后相遇,甲每小时行12千米,问乙每小时行多少千米?

4.甲、乙两站相距486千米,两列火车同时从两站相对开出,5小时相遇。第一列火车比第二列火车每小时快1.7千米,两列火车每小时的速度各是多少?

5.两列火车同时从相距650千米的两地相向而行,甲列火车每小时行50千米,乙列火车每小时行52千米,4小时后还差多少千米才能相遇?

6.大陈庄和小王庄相距90千米。小刚和小牛分别由两庄同时反向出发。2小时24分后两人相距46.6千米,如果小刚每小时行9.9千米,小牛每小时行多少千米?

7.学校距活动站670米,小明从学校前往活动站每分钟行80米,2分钟后,小丽从活动站往学校走,每分钟行90米,小明出发多少分钟后和小丽相遇?相遇时二人各行了多少米?

8.甲、乙两队合挖一条水渠,甲队从东往西挖,每天挖65米,乙队从西往东挖,每天比甲多挖2.5米。两队合挖8天后还差52米,这条水渠全长多少米?

9.张、李两位叔叔计划共同生产一种零件300个,二人一起生产了5小时后还差40个没完成。已知张叔叔每小时生产24个,李叔叔每小时生产多少个?

10.甲、乙两队合修一条长2400米的路,甲队每小时修126米,乙队每小时比甲队多修48米,求完工时两队各修路多少米?

11.东西两村相距64千米。甲、乙二人同时骑车从东西两地相对出发,2.5小时相遇。甲每小时行12.5千米,乙每小时比甲快多少千米?

12.一列客车和一列货车分别从甲、乙两地相向而行。客车每小时行50千米,货车每小时比客车慢8千米,客车先行1小时后,货车从乙地出发,经过3小时后两车相遇。甲、乙两地相距多少千米?

13.东西两城相距254千米,甲、乙两辆汽车相对开出,甲车每小时行27千米,先行2小时后,乙车开始出发,速度为每小时23千米。乙车出发几小时后两车相遇?

14.甲、乙两个工程队开凿一条隧道。甲队每天开凿1.5千米,乙队比甲队的2倍少0.5千米.半个月完成了任务,这条隧道有多长?

15.两艘客轮同时从两港相对行驶,甲轮每小时行40千米,乙轮每小时行36千米,早上8时开出,晚上11时相遇,两港口相距几千米?

16.甲、乙两个工程队同时从公路的一点向两头铺沥青,甲队每天比乙队多铺20米。已知4天后两队相距880米,两队每天各铺多少米?

17.小明和小华相距50步远,同时反向出发,小明每分钟走80步,小华每分钟走85步。当两人相距1700步时,出发了多少分钟?

18.两辆摩托车分别从相距440千米的两地同时相向而行,因雪后路滑,5小时后才相遇。甲车比原计划每小时少行15千米,乙车比原计划每小时少行7千米。已知原计划甲车每小时的速度是乙车的1.2倍,求两车原计划每小时各行多少千米?

提高篇

20:汽车从A地开往B地,如果速度比预定的每小时慢5千米,到达时间将比预定的晚八分之一,如果速度比预定的增加三分之一,到达时间将比预定早1小时,求AB两间的路程?

21:从甲地到乙地,先是上坡路,然后就是下坡路,一辆汽车上坡速度为每小时20千米,下坡速度为每小时35千米。车从甲地到乙地共用9小时,从乙地返回到甲地共用7.5小时。求去时上坡路和下坡路分别为多少千米?

22:甲乙丙3人进行100米赛跑,当甲到达终点时,乙离终点还有20米,丙离终点还有40米。如果三人赛跑的速度不变,当乙到达终点时,丙离终点还有多少米?

23:甲.乙两车同时从A.B两地相向而行,第一次两车在距B64公里处相遇,相遇后两车仍以原速度继续行驶,并在到达对方站后立即原路返回.途中两车在距A48公里处相遇,两次相遇点相距多少公里?

24.,乙两车同时从A,B两地出发相向而行,4小时后相遇,相遇后甲车继续行驶3小时到达B.乙车每小时行24千米,A,B地相距多少千米?

25:当甲在60米赛跑中冲过终点时,比乙领先10,比丙领先20,如果当乙和丙按原来的速度继续冲向终点,那么当乙到达终点时将比丙领先多少米?

26:.,乙两人分别从A,B两地同时出发,如果两人同向而行,甲经过24分钟被乙赶上,如果两人相向而行,经过4分钟两人相遇,已知甲平均没分钟走50,问乙平均没分钟走多少米?

27:.甲乙二人从相距36千米的两地相向而行,若甲先出发2小时,则在乙动身2.5小时后两人相遇,若乙先出发2小时,则甲动身3小时后二人相遇,求甲乙二人速度.

28:.一列快车和一列慢车相向而行,快车的长是280,慢车的车长是285,坐在快车上的人看见慢车驶过的时间是11,那么做在慢车上的人看见快车驶过的时间是多少?

29:绕湖一周是24千米,小张和小王从湖边某一地点同时出发反向而行.小王以4千米/小时速度每走1小时后休息5分钟;小张以6千米/小时速度每走50分钟后休息10分钟.问:两人出发多少时间第一次相遇?

  解:小张的速度是6千米/小时,50分钟走5千米我们可以把他们出发后时间与行程列出下表:

  12152724大,从表上可以看出,他们相遇在出发后2小时10分至3小时15分之间.

  出发后2小时10分小张已走了

  此时两人相距

  24-811=5(千米).

  由于从此时到相遇已不会再休息,因此共同走完这5千米所需时间是

  46)=0.5(小时).

  2小时10分再加上半小时是2小时40.

  答:他们相遇时是出发后2小时40.

  30:一个圆周长90厘米,3个点把这个圆周分成三等分,3只爬虫ABC分别在这3个点上.它们同时出发,按顺时针方向沿着圆周爬行.A的速度是10厘米/秒,B的速度是5厘米/秒,C的速度是3厘米/秒,3只爬虫出发后多少时间第一次到达同一位置?

  解:先考虑BC这两只爬虫,什么时候能到达同一位置.开始时,它们相差30厘米,每秒钟B能追上C5-3)厘米0.

  30÷5-3)=15(秒).

  因此15秒后BC到达同一位置.以后再要到达同一位置,B要追上C一圈,也就是追上90厘米,需要 90÷5-3)=45(秒).BC到达同一位置,出发后的秒数是

15,,105150195…… 再看看AB什么时候到达同一位置.第一次是出发后 30÷10-5=6(秒),以后再要到达同一位置是A追上B一圈.需要90÷10-5)=18(秒),

AB到达同一位置,出发后的秒数是62442,,7896对照两行列出的秒数,就知道出发后603只爬虫到达同一位置.答:3只爬虫出发后60秒第一次爬到同一位置.

请思考,3只爬虫第二次到达同一位置是出发后多少秒?

31:图上正方形ABCD是一条环形公路.已知汽车在AB上的速度是90千米/小时,在BC上的速度是120千米/小时,在CD上的速度是60千米/小时,在DA上的速度是80千米/小时.CD上一点P,同时反向各发出一辆汽车,它们将在AB中点相遇.如果从PCM,同时反向各发出一辆汽车,它们将在AB上一点N处相遇.求 

  解:两车同时出发至相遇,两车行驶的时间一样多.题中有两个相遇,解题过程就是时间的计算.要计算方便,取什么作计算单位是很重要的.

设汽车行驶CD所需时间是1.根据走同样距离,时间与速度成反比,可得出

  

  分数计算总不太方便,把这些所需时间都乘以24.这样,汽车行驶CDBCABAD所需时间分别是24121618.

P点同时反向各发一辆车,它们在AB中点相遇.P→D→AP→C→B所用时间相等.

PC上所需时间-PD上所需时间 =DA所需时间-CB所需时间=18-12=6.

而(PC上所需时间+PD上所需时间)是CD上所需时间24.根据和差计算得,C上所需时间是(24+6÷215PD上所需时间是24-159.现在两辆汽车从M点同时出发反向而行,M→P→D→A→NM→C→B→N所用时间相等.MPC中点.P→D→A→NC→B→N时间相等,就有BN上所需时间-AN上所需时间=P→D→A所需时间-CB所需时间=918-12=15.BN上所需时间+AN上所需时间=AB上所需时间=16.

立即可求BN上所需时间是15.5AN所需时间是0.5.

32:体育场的环形跑道长400米,小刚和小华在跑道的同一起跑线上,同时向相反方向起跑,小刚每分钟跑152米,小华每分钟跑148米。几分钟后他们第3次相遇? 解x分钟后他们第三次相遇152x148x=400×3300x=1200 x=4答:4分钟后他们第3次相遇。

33:体育场的环形跑道长400米,小刚和小华在跑道的同一起跑线上,同时向相反方向起跑,小刚每分钟跑152米,小华每分钟跑148米。几分钟后他们第3次相遇?

  解x分钟后他们第三次相遇 152x148x=400×3 300x=1200 x=4

 答:4分钟后他们第3次相遇。

34:A港和B港相距662千米,上午9点一艘寒山号快艇从甲港开往乙港,中午12点另一艘天远号快艇从乙港开往甲港,到16点两艇相遇,寒山号每小时行54千米,天远号的速度比寒山号快多少千米?(用两种方法解)

  解寒山号比天远号快艇先开时间:

  12-9=3(小时)从天远号开出到与寒山号相遇的时间:16-12=4(小时)

  方法(1):天远号比寒山号快的千米数:(662-54×3÷4-54-54=500÷4-54-54=125-54-54=17(千米)此题中的时间是用时刻替代的,只要把时刻转换成时间就简单了。换算的方法是:结束时间-开始时间=经过时间。

  35:甲骑摩托车,乙骑自行车,同时从相距126千米的AB两城出发、相向而行。3小时后,在离两城中点处24千米的地方,甲、乙二人相遇。求甲、乙二人的速度各是多少?

甲的速度:(126÷224÷3=29(千米/小时)乙的速度:(126÷2-24÷3=13(千米/小时)答:甲骑摩托车的速度是每小时29千米,乙骑自行车的速度是每小时13千米。【解题关键与提示】

  此题可用线段图表示:

  如上图,中点处就是AB两城正中间的地方,所以由中点处到A城和B城之间的距离都是(126÷2)千米。甲骑摩托车比乙骑自行车速度快,所以同样行3小时,行驶的路程比乙多,要在离中点24千米处相遇,因此,甲走的路程是(126÷2+24)千米;乙走的路程是(126÷2-24)千米。

36:A港和B港相距662千米,上午9点一艘寒山号快艇从甲港开往乙港,中午12点另一艘天远号快艇从乙港开往甲港,到16点两艇相遇,寒山号每小时行54千米,天远号的速度比寒山号快多少千米?(用两种方法解)寒山号比天远号快艇先开时间:12-9=3(小时)天远号开出到与寒山号相遇的时间:16-12=4(小时)方法(1):天远号比寒山号快的千米数:662-54×3÷4-54-54=500÷4-54-54 =125-54-54=17(千米)方法(2):设天远号每小时比寒山号快x千米。以下略。【解题关键与提示】此题中的时间是用时刻替代的,只要把时刻转换成时间就简单了。换算的方法是:结束时间-开始时间=经过时间。 ★★★10甲骑摩托车,乙骑自行车,同时从相距126千米的AB两城出发、相向而行。3小时后,在离两城中点处24千米的地方,甲、乙二人相遇。求甲、乙二人的速度各是多少?甲的速度:(126÷224÷3=29(千米/小时)乙的速度:(126÷2-24÷3=13(千米/小时)答:甲骑摩托车的速度是每小时29千米,乙骑自行车的速度是每小时13千米。【解题关键与提示】 此题可用线段图表示:如上图,中点处就是AB两城正中间的地方,所以由中点处到A城和B城之间的距离都是(126÷2)千米。甲骑摩托车比乙骑自行车速度快,所以同样行3小时,行驶的路程比乙多,要在离中点24千米处相遇,因此,甲走的路程是(126÷2+24)千米;乙走的路程是(126÷2-24)千米。

37:有一个人在公路上前行,对面来了一辆汽车,他问司机:你后面遇到一个骑自行车的人吗?司机回答:“10分钟前我超过一个骑自行车的人。这人继续前行,又过了10分钟与骑自行车的人相遇。已知骑自行车的速度是步行人的3倍。求汽车速度是步行人的几倍?(步行人与司机对话时间忽略不计)[7画线段图解]

38:艘客轮和一艘货轮从甲乙两码头同时相对开出,当客轮行了全程的37,货轮行了36千米;当客轮到达码头时,货轮行了全程的710.甲乙两码头相距多少千米?:"当客轮到达码头时,货轮行了全程的710"知道货轮速度是客轮的7/10.(在相同时间里,货轮路程是客轮的7/10)

1.客轮行了全程的37,货轮行全程的多少?3/7×7/10=3/10 2.甲乙两码头相距多少千米?36÷3/10=120千米

39:自行车队出发12分钟后,通信员骑摩托车去追他们,在距出发地点9千米处追上了自行车队,然后通讯员立即返回出发点,到后又返回去追上了自行车队,再追上时,恰好离出发点18千米,求自行车队和摩托车的速度?

分析:比较复杂的行程问题,关键在于找到新的突破口,本题中给出了两次追击的路程,这就是突破口。

解答:从第一次追上到第二次追上的过程中,自行车队进了189=9(千米),而摩托车行进了:18+9=27(千米),由此可知摩托车速度是自行车队的3倍,那么第一次追及开始时,自行车领先距离为:6÷12=0.5(千米/),摩托车速度为:0.5×3=1.5(千米/)

评注:在行程问题中,条件与条件之间有密切关系,充分利用所有已知条件及由这些条件推导出的条件非常重要,而要掌握所有条件首先就需要把整个行程的过程弄清楚。

40:图39是一个边长100米的正方形,甲从A点出发,每分钟走70米,乙同时从B点出发,每分钟走85米,两人都按逆时针方向沿着正方形边行进,问:乙在何处首次追上甲?乙第二次追上甲时,距B点多远。

分析与解答:乙比甲快,第一次追及距离为300米,所用时间为:300÷8570=20(分钟),此时甲走了70×20=1400(米),因此首次追上时,甲、乙在C点。第二次追距离从C点开始算是一圈400米,用时为:400÷8570=262/3(分钟),乙走的距离为:262/3×85=22662/3(米),因此乙第二次追上甲时在AB之间距B331/3米处。

40

41

42

评注:在有图的题目中认真识图,注意行进方向、追及距离等问题。

41:图40是一个边长为100米的正三角形,甲自A点,乙自B点同时出发,按顺时针方向沿三角形的边行进,甲每分钟走90米,乙每分钟走150米,但过每个顶点时,因转弯都要耽误10秒钟,问:乙在出发后多长时间,在何处追上甲?

分析与解答:甲速度合1.5/秒,每边走662/3秒,停留10秒,乙速度合2.5/秒,每边走40秒,停留10秒,列表如下:

到达同一距离时间(秒)

A

C

B

/

662/3

1431/3

40

90

140

乙可能在顶点追上甲,也可能在边上追上甲,从表中看,在C点时乙没有追上甲,到达B点时,乙已经超过甲,则乙在BC之间追上了甲,甲在762/3秒从C出发,乙在100秒从C出发,乙出发时甲走了了:(100762/3×1.5=35(米),乙追上甲用时为:35÷2.51.5=35(),这时乙走了35×2.5=87.5(),因此乙在出发135秒,即215秒后在BC间距C87.5米处追上甲。

评注:追及过程中有停留的问题使行进快的人在追及后可能被超越,因此这类问题中不但要求追及的情况,还要确认是第一次追及才可以。

42:图41是一个跑道的示意图,沿ACBEA走一圈是400米,沿ACBDA走一圈是275米,其中AB的直线距离是75米,甲、乙二人同时从A点出发练习长跑,甲沿ACBDA的小圈跑,每100米用24秒,乙沿ACBEA的大圈跑每100米用21秒,问:1)乙跑第几圈时第一次与甲相遇?2)出发多长时间甲、乙再次在A点相遇?

分析:因为甲、乙沿不同的路线,所以并不谁多跑了一圈就一定有一次超过,超过只可能发生在他们共同经过的路线上。

解答:1)甲跑半圈ACB用时48秒,乙跑半圈ACB用时42秒,也就是如果某次乙经过4点的时间比甲晚不超过6秒,他就能在这一圈追上甲,下面看甲乙经过A点的时间序列表(单位:秒)

0

66

132

198

264

330

0

84

168

252

336

由此可知乙跑第五圈时会第一次与甲相遇。

2)甲跑一圈用66秒,乙跑一圈用84秒,它们的最小公倍数为924,因此924秒即1524秒后,甲、乙第一次同时回到A点。

43:甲、乙、丙三辆车先后从A地开往B地,乙比丙晚出发5分钟,出发后45分钟追上丙;甲比乙晚出发15分钟,出发后1小时追上丙,那么,甲出发后多长时间追上乙?

分析:题目中只有时间条件,这就说明用三人速度的比例关系即可解题。

解答:设丙速度为U/分钟,同乙出发时丙走了5U米,乙用了45分钟追上丙,乙速度比丙速快5U/45=1/9U/秒,即乙的速度为10/9U/秒,同样甲比丙晚出发20分钟,用了1小时追上丙,则甲比丙速度快:20U/6=1/3U/秒,甲速度为4/3U/秒,甲追乙需用时间为:(10/9U× 15÷4/3U 10/9U=75(分钟)。

评注:解题中设的丙速度只是为了表示方便,实质上解题过程中只用到了三人速度之比,在只有时间条件的题目中是不可能求出路程或速度的,用比例解题是必然的方法。

44:甲、乙、丙三个车站在同一公路上,乙站距甲、丙两站距离相等,小明和小强分别从甲、丙两站相向而行,小明过乙站150米后与小强相遇,然后两人继续前进,小明走到丙站后立即返回,经过乙站后450米又追上小强,问:甲、丙两站距离多远?

分析:仔细分析两人两次相遇的行程,可以发现小明第一次相遇走了一倍甲、乙两站间的的距离又多150米,第二次相遇走了三倍甲、乙两站间的距离又450米,第二次路程是第一次的3倍,这就是突破口。

解答:两次相遇小明走的总路程比为13,小强也一定相同,注意到从第一次相遇到第二次相遇小强走了600米,由此可知小强在第一次相遇时走了:600÷31=300(米),甲、丙两站之间距离为:(300150×2=900(米),即甲、丙两站距离900米。

评注:观察数据之间的关系,在条件比较少的题目中,这有时候也会有重要作用。

45:甲、乙、丙三人到学校到体育场的路上练习竞赛走,甲每分钟比乙多走10米,比丙多走31米,上午9点三人同时从学校出发,上午10点甲到达体育场后立即返回学校,在距体育场310米处遇到乙,问:1)从学校到体育场的距离是多少?2)乙的速度是多少?3)甲与丙何时相遇?

分析:题目中距离的条件只有一个,因此以这个条件为中心分析,求学校到体育场距离比较有效。

解答:甲与乙相遇时走了的时间为:310×2÷10=62(分钟),已知甲走到体育场用了1小时,因此2分钟走了310米,甲速度为:310÷2=155(米/分),乙速度为:15510=145(米/分),体育场到学校距离为:(155145×62÷1=9300(米)合9.3千米,甲、乙相遇用时为:2×9300÷155124=662/3(分钟),即学校到体育场9.3千米,乙速度145/分,甲、丙相遇在10640秒。

评注:有时候,根据条件的类型和结论所求也可以推测出大概方法,例如本题,求距离,而题目中只有一个关于距离的条件,这个条件就很重要,这样的分析有助于提高效率。

46:甲、乙二人进行游泳追逐赛,规定两人分别从游泳池50米泳道的两端同时开始游,直到一方追上一方为止,追上者为胜,已知:甲、乙的速度分别为每秒1.0米和0.8米,问:1)比赛开始后多长时间甲追上乙?2)甲追上乙时两人共迎面相遇了几次?3)比赛过程中,两人同方向游了多长时间?

分析与解答:1)甲追上乙用时为:50÷10.8=250()2)第一次迎面相遇甲、乙共游了50米,之后每100米相遇一次,甲、乙共游了250×10.8=450(),最后一次甲追上乙不算,甲、乙迎面相遇了4次;3)甲游50米用50秒,乙游50米用62.5秒,甲第一次转身后与乙同向游了12.5秒第二次转身后与乙同游了25秒,依次类推,甲、乙同向游了125秒。

评注:注意迎面相遇与追上相遇的区别。

47:乌龟与小白兔赛跑比赛场地从起点到插小旗处马上返回,跑到起点再返回……已知小白兔每秒跑10.2米,乌龟每秒跑0.2米,如果从起点出发算它们第一次相遇,问:1)出发后多长时间它们第二次相遇?2)第三次相遇距起点多远?3)第二次相遇到第四次相遇乌龟爬了多远?4)乌龟爬到50米时,它们共相遇了多少次?

分析与解答:1)第二次相遇是在小白兔返回时,迎面相遇,用时为:2×104÷10.20.2=20(),即20秒后迎面相遇;2)第三次相遇是小白兔比乌龟多跑一圈后追上乌龟的时候,用时为:2×104÷10.20.2=20.8(),此时乌龟爬了:20.8×0.2=4.16(),即第三次相遇距起点4.16米;3)第四次相遇是小白兔第二次与乌龟迎面相遇,与上一次迎面相遇相差时间为:2×104÷10.20.2=20(),乌龟爬了:20×0.2=4(米),即第二次与第四小白兔跑了250×10.2=2550(米),在乌龟没到小旗处之前,小白兔每104米中都会与乌龟相遇一次,因此2550÷104=24……54.54>50,第25次乌龟与小白兔也已经相遇,因此它们共相遇了25次。

评注:这是一道综合题,包括相遇问题、追及问题等,正确判断问题的类型,用适当方法解决也是重要的技巧。

48:甲、乙二人同时从起点出发沿同一方向行走,甲每小时行5千米,而乙第一小时行1千米,第二小时行2千米,以后每行1小时都比前1小时多行1千米,问:经过多长时间乙追上甲?

分析与解答:乙追上甲时,两人走了相同的时间和路程,因此平均速度也相等,也就说乙追上甲时,平均速度5千米每小时,由于乙每小时速度是一个等差数列,因此平均速度为5千米/时,说明乙最后一小时速度为9千米/时,也就是说9小时后乙追上甲。

评注:非匀速运动中,利用速度的变化规律解题比较有效。

49:甲、乙两人赛车,第一分钟甲的速度为每秒6.6米,乙速度为每秒2.9米,以后,甲每分钟速度是自己前一分钟的2倍,乙每分钟速度是自己前一分钟的3倍,问:出发后多长时间乙追上甲?

分析:每分钟甲、乙速度都在变,但一分钟内,甲、乙速度是不变的,因此,先确定在哪一分钟追上甲,再求具体时间。

解答:列表比较甲、乙走的路程:

50:某解放军队伍长450米,以每秒1.5米的速度前进,一战士以每秒3米的速度从排尾到排头并立即返回排尾,那么这需要多少时间?

分析:本题是与排头的追及问题和与排尾的相遇问题的结合。

解答:追排头用时为:450÷31.5=300(),回排尾用时为:450÷31.5=100(),其用时400秒。

评注:队伍行进问题一般都可以归为追及或相遇问题。

51:某边防站甲、乙两哨所相距15千米,一天,两个哨所的巡逻队同时从各自哨所出发相向而行,他们的速度分别为每小时4.5千米和5.5千米,乙队出发时,他们带的一只军犬同时向哨所方向跑去,遇到甲队时立即转身往回跑,遇到乙队又立即转身向甲哨所方向跑去……,这只军犬就这样不停地以每小时20千米的速度在甲、乙两队之间奔跑,直到两队会合为止,问:这只军犬来回跑了多少路?

分析:如果计算军犬每次向一个方向跑的距离再求和是不可行的。注意到军犬一直在跑且速度始终为20千米/时不变,所以只要求得它跑的总时间即可。

解答:甲、乙两队从出发到相遇用时为:15÷4.55.5=1.5(小时),这也是军犬不断奔跑的时间,因此军犬总共跑的距离为:20×1.5=30(千米)

评注:以相同速度行进的路程可以合起来计算,不要拘泥于问题的细节,要从全局观察一下问题。

52:甲、乙二人分别从AB两地同时出发,如果两人同向而行,甲26分钟追上乙;如果两人相向而行,6分钟可相遇,已知乙每分钟行50米,求AB两地的距离。

分析:相遇问题和追及问题分别与速度和及速度差有关,通过和差也能求得速度关系。

解答:甲、乙两个人速度之和为每分钟行全程的1/6,甲比乙快他们速度之差为每分钟差全程的1/26,通过和差公式,因此甲每分钟走全程的1/2×1/61/26=4/39,乙走完全程的1/2×1/61/26=5/78,由此可求AB全和为:50÷5/78=780(米),即AB相距780米。

53:某人沿着电车道旁的便道以每小时4.5千米的速度步行,每7.2分钟有一辆电车迎面开过,每12分钟有一辆电车从后面追过,如果电车按相等的时间间隔以同一速度不停地往返运行,问:电车速度是多少?次相遇乌龟爬了4米;4)乌龟爬50米用时为500.2=250(),电车之间的时间间隔是多少?

分析:不变的时间间隔,相同的速度,不变的距离间隔就是本题关键。

解答:设两车间隔S米,则对迎面开来的车马行人,S是相遇距离和,对从后追上的电车和行人,S是追及问题的距离差S/7.2=5/36S是行人与车速度和,S/12是行人与车速度之差,由此可求得行人与车速度和与差的比为53,因此车与行人速度比为41,车的速度为4.5×4=18(千米/)行人为速度合75/分,汽车合300/分,电车间隔时间为(75+300×7.2÷300=9(分钟),即电车速度18千米/时,电车间隔时间为9分钟。

评注:在有一定时间间隔的班车问题中,不变的间隔时间、距离是解题关键。

路程(米)

1分钟

2分钟

3分钟

4分钟

396

1188

2772

5940

174

696

2262

6960

从表中可知在3分钟与4分钟之间乙超过甲,3分钟时甲乙差510米,第四分钟甲速度为52.8/秒,乙速度为78.3/秒,乙追上甲用时为:510÷78.352.8=20(),因此乙追上甲总共用了320秒。

评注:把不匀速问题分段,使每段成为我们熟悉的匀速问题,这种思想在各类题目中都非常有用。

54:学校组织春游,同学们下午一点出发,走了一段平路,爬了一座山,然后按原路返回,下午七点回到学校,已知他们步行速度,平路为4千米/小时,上山为3千米/小时,下山为6千米/小时,问他们一共走了多少路?

分析:往返路程可以分为四段,两段平路,一段上山,一段下山,求路程,我们就需要各段的行进时间。

解答:设同学们下山用时为t,由于上、下山路程相等,下山速度是上山的2倍,因此上山时间为2t,两段平路一共用时(63t)小时,总路程为:t×62t×3(63t)×4=24(千米),即他们一共走了24千米。

评注:本题从条件的数量上并不足够确定平路及山路的长度,因为上、下山平均速度与平路速度相同,因此才能求得总路程。

55:甲、乙两人以同样的速度沿铁路相向而行,恰好一列火车开来,整个火车经过甲身边用了18秒,2分钟后又用15秒从乙身边经过,问:1)火车速度是甲速度的几倍?2)火车经过乙身边后,甲、乙还需多少时间才能相遇?3)甲步行该火车长度需多长时间?

分析:题目中只有时间条件,因此不能求出具体路程或速度,这样的题目总是用比例求解的。

解答:设火车长为L米,甲、乙步行速度U/秒,火车速度V/秒,则由火车经过甲、乙身边的情况,知:(UV×15=L=VU×18U+V=L/15VU=L/18V=L/15+L/18÷2=11/180LU=L/15L/18÷2=1/180LL=180UVU=111,因此火车速度是甲速度的11倍,火车经过甲身边时,甲、乙相距为:L+U+V×120=1620U,到甲、乙相遇用时为:1620U÷U+U=810(秒),因此火车经过乙后到甲、乙相遇还要:81012015=675(秒),甲走火车长度的距离用时为:L÷U=L÷1/180L=180(秒),即火车速度是甲的11倍,火车经过乙后675秒甲、乙相遇,甲步行火车全长用180秒。

评注:解答中设的长度与速度只是参数而不是未知数,也就是设这些变量并不是要求它们的值,而是为了便于表示,求它们之间的关系,在求比较复杂的比例关系时,设一些参数便于表示和运算。

56:某人沿公路前进,迎面来了一辆汽车,他问司机:后面有骑自行车的人吗?司机回答:十分钟前我超过了一个骑自行车的人,这人继续走了十分钟,遇到了这个骑自行车的人,如果自行车的速度是人步行的三倍,问汽车速度是人步行速度的多少倍?

分析:题目中只有时间条件,显然要用比例解题。

解答:注意汽车超过自行车到遇到行人这10分钟的路程,自行车走了20分钟加上行人走了10分钟才走完,因为自行车速度又是行人的3倍,所以自行车走20分钟的路行人要走60分钟,也就是说汽车走10分钟的路行人要走70分钟,因此汽车速度是行人的7倍。

评注:适当的选取一段路程或时间对解题有很大帮助。

57:一辆车从甲地开往乙地,如果把车速提高20%,可以比原定时间提前1小时到达;如果以原速行驶100千米后再将车速提高30%,也比原定时间提前1小时到达,求甲、乙两地距离。

分析:由于求距离,要特别注意100千米这个条件,寻找与之对应的条件。

解答:提高车速20%,前后两次速度比为56,时间比应该为65,提前1小时说明原计划用6小时,实际用5小时,同理,在提高车速30%这段距离内,车速比1013,时间比为1310,提前1小时说明原计划这段距离用时为:1310×13=13/3(小时)合41/3小时,也就是说100千米行驶了613/3=5/3(小时),汽车速度为:100÷5/3=60(千米/小时),甲、乙两地距离为:60×6=360(千米)。

评注:本题中比例的运用重要且有效,认真思考可以从中学到很多技巧。

58:甲、乙两班学生到少年宫参加活动,但只有一辆车接送甲班学生坐车从学校出发的同时,乙班学生开始步行,车到途中某处让甲班学生下车步行,车立即返回接乙班上车,并直接开到少年宫,已知学生步行速度为每小时4千米,汽车载学生速度为每小时40千米,空车速度为每小时50千米,要使两班学生同时到达少年宫,甲班学生应步行全程的几分之几?

分析:若要甲、乙两班学生同时到达,则他们步行的时间和路程一定相等,他们与汽车行进路程如图所示

解答:设全程为S千米,甲、乙两班各步行了a千米,则由出发到汽车遇到乙班这段时间有:

,计算可得s=7a,a=1/7S,因此甲班步子行了全程的1/7

评注:确定甲、乙两班步行距离相等是本题关键。

59:甲、乙两车分别从AB两地同时出发相向而行,6小时后相遇在C点,如果甲车速不变,乙车每小时多行5千米,且两车还从AB两地同时出发,相向而行,则相遇地点距C12千米;如果乙车速度不变,甲车每小时多行5千米;如果乙车速度不变,甲车每小时多行5千米,且两车还是从AB两地同时出发相向而行,则相遇地点距C16千米,甲车原来每小时行多少千米?

分析:仔细分析条件,发现第二种与第三种方案甲、乙速度和相同,因此时间相同,这就是突破。

58

59

解答:如图58所示,第二次与第三次相遇地点相距28千米,由于所用时间相同两次甲速度差为5千米/小时,可知所用时间为:28÷5=5.6(小时),比较前两次,甲速度相同,时间第二次减少0.4小时,少走了12千米,由此可求甲速度为:12÷65.6=30(千米/)

评注:条件之间的微妙关系有时也有重要作用,利用这个方法解题不但要观察力,更需要积累经验。

60:如图59所示,正方形ABCD是一条环形公路,已知汽车在AB上时速是90千米,在BC上时速是120千米,在CD上时速是6千米,在DA上时速是80千米,从CD上一点P,同时反向各发出一辆汽车,它们将在AB中点相遇,如果从PC的中点M同时反向各发一辆汽车,它们将在AB上一点N相遇,问:NA的距离与到B的距离的比是多少?

分析:本题中显然距离是不可求的,所求边是比例,必须用比例求解。

解答:设正方形边长为L千米,DP长为X千米,则由P点出发的车的情况有:,由此可求得x=3/8L,即PDC上距D3/8处,由MPC的中点,M在距D11/16处。考虑到两辆汽车在各段路上速度相同,因此它们无论从哪里出发,到相遇时所用时间一定都相同,这个时间是辆车跑一圈时间的一半,设AB中点为E,则由上面的结论可推出汽车跑PM的时间与跑EN时间相同,由汽车在ABCD上速度比为32,相同时间内路程比为32PMDC5/16,则ENAB5/16×3/2=15/32,因此ANAB1/32NA的距离与到B的距离的比是131

评注:本题要求熟练掌握比例的运用才能解出,大家可以作为对自己的一个检测。

61:一艘轮船顺流航行120千米,逆流航行80千米共用16小时;顺流航行60千米,逆流航行120千米也用16小时,求水流速度。

分析:求水流速度就必须求出顺流逆流速度,条件中两种航行方法用时相同,这就是关键。

解答:由两种航行方法用时相同,第一种比第二种顺水多行60千米,逆水少行40千米,可知顺水60千米与逆水40千米航行时间相等,因此顺水与逆水航行速度之比为32,因此可推得16小时顺水可走120+80×3/2=240(千米),逆水可走120×3/280=160(千米),船顺水速度为:240÷16=15(千米/时),逆水速度为:160÷16=10(千米/时),水流速度为:(1510÷2=2.5(千米/)

评注:比较同时间所走路程或相同路程所用时间都是利用比例关系解题的常用方法。

62:在一个沙漠地带,汽车每天行驶200千米,每辆车载运可行驶24天的汽油,现有甲、乙两辆汽车同时从某地出发,并在完全任务后,沿原路返回,为了让甲车尽可能开出更远距离,乙车在行驶一段路程后,仅留下自己返回出发地的汽油,将其他油给甲车,求甲车能开行的最远距离。

分析与解答:甲、乙两车一共有48天的汽油,为了行驶尽量远,可以认为两车返回都使汽油刚好用完,但如果乙车过早返回,它留下的汽油甲车无法全部带走不是最好方案,如果乙车返回晚了,它留下的汽油不能使甲车满载,我们考虑提前一天让乙车返回,就能让甲车走得更远,因此这也不是最好方案,因此可知,乙留给甲的汽油恰好让甲车满载就是最佳方案,因此可知,乙留给甲的汽油恰好让甲车满载就是最佳方法,因此乙8天后给甲骨8天的油然后返回,这样甲车走得最远,它可以用32天的油,最远走:(32÷2×200=3200(千米)。

评注:设计最佳方案的题不但要说明方案,还需证明这个方案的确是最佳的。

63:一辆汽车往返于甲乙两地,去时用了4个小时,回来时速度提高了1/7,问:回来用了多少时间?

分析与解答:在行程问题中,路程一定,时间与速度成反比,也就是说速度越快,时间越短。设汽车去时的速度为v千米/时,全程为s千米,则:去时,有s÷v=s/v=4,则回来时的时间为:,即回来时用了3.5小时。

评注:利用路程、时间、速度的关系解题,其中任一项固定,另外两项都有一定的比例关系(正比或反比)。

64AB两城相距240千米,一辆汽车计划用6小时从A城开到B城,汽车行驶了一半路程,因故障在中途停留了30分钟,如果按原计划到达B城,汽车在后半段路程时速度应加快多少?

分析:对于求速度的题,首先一定是考虑用相应的路程和时间相除得到。

解答:后半段路程长:240÷2=120(千米),后半段用时为:6÷20.5=2.5(小时),后半段行驶速度应为:120÷2.5=48(千米/),原计划速度为:240÷6=40(千米/时),汽车在后半段加快了:4840=8(千米/时)。

答:汽车在后半段路程时速度加快8千米/时。

65:两码头相距231千米,轮船顺水行驶这段路程需要11小时,逆水每小时少行10千米,问行驶这段路程逆水比顺水需要多用几小时?

分析:求时间的问题,先找相应的路程和速度。

解答:轮船顺水速度为231÷11=21(千米/时),轮船逆水速度为2110=11(千米/时),

逆水比顺水多需要的时间为:2111=10(小时)

答:行驶这段路程逆水比顺水需要多用10小时。

66:汽车以每小时72千米的速度从甲地到乙地,到达后立即以每小时48千米的速度返回到甲地,求该车的平均速度。

分析:求平均速度,首先就要考虑总路程除以总时间的方法是否可行。

解答:设从甲地到乙地距离为s千米,则汽车往返用的时间为:s÷48+s÷72=s/48+s/72=5s/144,平均速度为:2s÷5s/144=144/5×2=57.6(千米/)

评注:平均速度并不是简单求几个速度的平均值,因为用各速度行驶的时间不一样。

67:一辆汽车从甲地出发到300千米外的乙地去,在一开始的120千米内平均速度为每小时40千米,要想使这辆车从甲地到乙地的平均速度为每小时50千米,剩下的路程应以什么速度行驶?

分析:求速度,首先找相应的路程和时间,平均速度说明了总路程和总时间的关系。

解答:剩下的路程为300120=180(千米),计划总时间为:300÷50=6(小时),剩下的路程计划用时为:6120÷40=3(小时),剩下的路程速度应为:180÷3=60(千米/小时),即剩下的路程应以60千米/时行驶。

评注:在简单行程问题中,从所求结果逆推是常用而且有效的方法。

68:骑自行车从甲地到乙地,以每小时10千米的速度行驶,下午1时到;以每小时15千米的速度行驶,下午1时到;以每小时15千米的速度行进,上午11时到;如果希望中午12时到,应以怎样的速度行进?

分析:求速度,先找相应的路程和时间,本题中给了以两种方法骑行的结果,这是求路程和时间的关键。

解答:考虑若以10千米/时的速度骑行,在上午11时,距离乙地应该还有10×2=20(千米),也就是说从出发到11时这段时间内,以15千米/时骑行比以10千米/时骑行快20千米,由此可知这段骑行用时为:20÷1510=4(小时),总路程为15×4=60(千米),若中午12时到达需总用时为5小时,因此骑行速度为60÷5=12(千米/时),即若想12时到达,应以12千米/时速度骑行。

69:一架飞机所带的燃料最多可以用6小时,飞机去时顺风,时速1500千米,回来时逆风,时速为1200千米,这架飞机最多飞出多远就需往回飞?

分析:求路程,需要速度和时间,题目中来回速度及总时间已知,我们可以选择两种方法:一是求往、返各用多少时间,再与速度相乘,二是求平均速度与总时间相乘,下面给出求往返时间的方法。

解答:设飞机去时顺风飞行时间为t小时,则有:1500×t=1200×(6t),2700×t=7200,t=8/3(小时),飞机飞行距离为1500×8/3=4000(千米)

评注:本题利用比例可以更直接求得往、返的时速,往返速度比54,因此时间比为45,又由总时间6小时即可求得往、返分别用时,在往返的问题中一定要充分利用往返路程相同这个条件。

70:有一座桥,过桥需要先上坡,再走一段平路,最后下坡,并且上坡,平路及下坡的路程相等,某人骑车过桥时,上坡平路,下坡的速度分别为每秒4米、6米、8米,求他过桥的平均速度。

分析:上坡、平路及下坡的路程相等很重要,平均速度还是要由总路程除以总时间求得。

解答:设这座桥上坡、平路、下坡各长为S米,某人骑车过桥总时间为:s÷4+s÷6+s÷8=s/4+s/6+s/8=13/24s,平均速度为:3s÷13/24s=24/13×3=72/13=57/13(秒),即骑车过桥平均速度为57/13秒。

评注:求平均速度并不需要具体的路程时间,只要知道各段速度不同的路程或时间之间的关系即可,另外,三段或更多路的问题与两段路没有本质上的差别,不要被这个条件迷惑。

71:某人要到60千米外的农场去,开始他以每小时5千米的速度步行,后来一辆18千米/时的拖拉机把他送到农场,总共用了5.5小时,问:他步行了多远?

解答:如果5.5小时全部乘拖拉机,可以行进:18×5.5=99(千米),其中9960=39(千米),这39千米的距离是在某段时间内这个人在行走而没有乘拖拉机因此少走的距离,这样我们就可以求行走的时间为39÷185=3(小时),即这个走了3个小时,距离为5×3=15(千米),即这个人步行了15千米。

评注:在以两种速度行进的题目中,假设是以一种速度行进,通过行程并和速度差求时间非常重要的方法。

72:已知某铁路桥长1000米,一列火车从桥上通过,测得火车从开始上桥到完全下桥共用120秒,整列火车完全在桥上的时间为80秒,求火车的速度和长度。

分析:本题关键在求得火车行驶120秒和80秒所对应的距离。

解答:设火车长为L米,则火车从开始上桥到完全下桥行驶的距离为(1000L)米,火车完全在桥上的行驶距离为(1000L)米,设火车行进速度为u/秒,则:

由此知200×u=2000,从而u=10L=200,即火车长为200米,速度为10/秒。

评注:行程问题中的路程、速度、时间一定要对应才能计算,另外,注意速度、时间、路程的单位也要对应。

73:甲、乙各走了一段路,甲走的路程比乙少1/5,乙用的时间比甲多了1/8,问甲、乙两人的速度之比是多少?

分析:速度比可以通过路程比和时间比直接求得。

解答:设甲走了S米,用时T秒,则乙走了11/5=5/4S(米),用时为:1+1/8=9/8T(秒),甲速度为:S/T,乙速度为:5/4 S÷ 9/8T=10S/9T,甲乙速度比为S/T10S/9T=910

评注:甲、乙路程比4/5,时间比8/9,速度比可直接用:4/5÷ 8/9=9/10,即910

74:一艘轮船在河流的两个码头间航行,顺流需要6小时,逆流要8小时,水流速度为每小时2.5千米,求船在静水中的速度。

分析:顺流船速是静水船速与水流速度之和,而逆流船速是两者之差,由此可见,顺流与逆流船速之差是水流速的2倍,这就是关键。

解答:设船在静水中速度为U千米/时,则:(U+2.5×6=(U2.5)×8,解得U=17.5,即船在静水中速度为17.5千米/时。

评注:行船问题是行程问题中常见的一种,解这些题时注意船速、水流之间的关系。

75:甲、乙两班进行越野行军比赛,甲班以每小时4.5千米的速度走了路程的一半,又以每小时4.5千米的速度走完了另一半,乙班用一半时间以每小时4.5千米的速度行进,另一半时间以每小时5.5千米的速度行进,问:甲、乙两班谁将获胜?

分析:表面上看两班行军都是两种速度各一半,但时间的一半与路程的一半是不同的。

解答:设总路程为S千米,则:甲班用时:T1=S/2÷4.5S/2÷5.5=S/9S/11=20/99S(小时),乙班用时:T2=S÷4.55.5×2=1/5S(小时),比较可得:T1>T2,即乙班用时较短,会获胜。

评注:以上解法具体分析了两种方法的用时,其实我们只从性质分析,已用一半时间快走,一半时间慢走,所以快走的路程比慢走的距离长,也就是说乙用快速走的路程超过了总路程的一半,因此自然比甲班快。这道题也代表了一类的问题。

76:甲、乙两人在400米环形跑道上跑步,两人朝相反的方向跑,两个第一次相遇与第二次相遇间隔40秒,已知甲每秒跑6米,问乙每秒跑多少米?

分析:环形跑道上相反而行,形成了相遇问题,也就是路程、时间及速度和关系的问题。

解答:第一次相遇到第二次相遇,两个人一共跑400米,因此速度和为400÷40=10(米/秒),乙速度为106=4(米/秒),即乙每秒跑4米。

评注:环形跑道上的相遇问题要注意一定时间内两人行进路程的总和是多少。

77:一辆公共汽车和一辆小轿车同时从相距299千米的两地相向而行,公共汽车每小时行40千米,小轿车每小时行52千米,问:几小时后两车第一次相距69千米?再过多少时间两车再次相距69千米?

分析:相遇问题中求时间,就需要速度和及总路程,确定相应总路程是本题重点。

解答:第一次相距69千米时,两车共行驶了:29969=230(千米),所用时间为230÷4052=2.5(小时),再次相距69千米时,两车从第一次相距69千米起又行驶了:69×2=138(千米),所用时间为:138÷4052=1.5(小时),即2.5小时后两车第一次相距69千米,1.5小时后两车再次相距69千米。

评注:相遇问题与简单行程问题一样也要注意距离、速度和及时间的对应关系。

78:一列客车与一列货车同时同地反向而行,货车比客车每小时快6千米,3小时后,两车相距342千米,求两车速度。

分析:已知两车行进总路程及时间,这是典型的相遇问题。

解答:两车速度和为:342÷3=114(千米/小时),货车速度为(1146÷2=60(千米/时),客车速度为11460=54(千米/时),即客车速度54千米/时,货车速度为60千米/

评注:所谓相遇问题并不一定是两人相向而行并相遇的问题,一般地,利用距离和及速度和解题的一类题目也可以称为一类特殊的相遇问题。

79:甲、乙两辆车的速度分别为每小时52千米和40千米,它们同时从甲地出发开到乙地去,出发6小时,甲车遇到一辆迎面开来的卡车,1小时后,乙车也遇到了这辆卡车,求这辆卡车速度。

分析:题目中没有给任何卡车与甲车相遇前或与乙车相遇后的情况,因此只能分析卡车从与甲车相遇到乙车相遇这段时间的问题。

解答:卡车从甲车相遇到与乙车相遇这段时间与乙车在做一个相遇运动,距离为出发6小时时,甲、乙两车的距离差:(5240×6=72(千米),因此卡车与乙车速度和为:72÷1=72(千米/时),卡车速度为7240=32(千米/时)

评注:在比较复杂的运动中,选取适当时间段和对象求解是非常重要的。

80:甲、乙两车同时从AB两地相向而行,它们相遇时距AB两地中心处8千米,已知甲车速度是乙车的1.2倍,求AB两地距离。

分析:已知与中心处的距离,即是知道两车行程之差,这是本题关键。

解答:甲车在相遇时比乙车多走了:8×2=16(千米),由甲车速度是乙的1.2倍,相遇时所走路程甲也是乙的1.2倍,由此可知乙所走路程为16÷1.21=80(千米),两地距离为(808×2=176(千米),即两地相距176千米。

评注:有效利用各种形式的条件也是重要的技巧。

81:兄妹二人在周长30米的圆形水池边玩,他们从同一地点同时出发,背向绕水池而行,兄每秒走1.3米,妹每秒走1.2米,照这样计算,当他们第十次相遇时,妹妹还需走多少米才能回到出发点?

分析:本题重点在于计算第十次相遇时他们所走过的路程。

解答:每两次相遇之间,兄妹两人一共走了一圈30米,因此第十次相遇时二人共走了:30×10=300(米),两人所用时间为:300÷1.31.2=120(),妹妹走了:1.2×120=144(),由于30米一圈,因此妹妹再走6米才能回到出发点。

82:甲、乙两车同时从AB两地相向而行,在距B54千米处相遇,他们各自到达对方车站后立即返回原地,途中又在距A42千米处相遇,求两次相遇地点的距离。

分析:甲、乙共相遇两次,得到第二次相遇时总路程是关键。

小学数学行程问题 行程问题中的停歇问题

解答:第一次相遇时,甲、乙两人走的总路程是AB距离的3倍,因此乙所走路程为54×3=162(千米),这时他们相距A42千米,也就是说AB距离为:16242=120(千米),两次相遇地点距离为1205442=24(千米)

评注:除了对总路程的分析以外,还要注意二次相遇时甲从BA走,乙从AB走,为了直观也可以画一个示意图,如下:

 

83:甲、乙两人从相距36千米的两地相向而行,若甲先出发2小时,则乙动身2.5小时后两个人相遇,若乙先出发2小时,则甲动身3小时后两人相遇,求甲、乙两人速度。

分析:换一种说法,甲走4.5小时,乙走2.5小时走完36千米:甲走3小时,乙走5小时也可以走完全程

解答:设甲速度为U千米/时,乙速度为V千米/时,

即甲速度6千米/时,乙速度3.6千米/时。

84:两列火车相向而行,甲车每小时行48千米,乙车每小时行60千米,两车错车时,甲车上一乘客从乙车车头经过他的车窗时开始计时,到车尾经过他的车窗共用13秒钟,求乙车全长多少米?

分析:甲车乘客看到乙车经过用了13秒而他看到的乙车速度则是甲、乙两车实际速度之和。

解答:乘客看到乙车的相对速度即甲、乙车实际速度之和为:4860=108(千米/时)合30/秒,乙车长为:30×13=390(米),即乙车全长为390

评注:错车也是一类常见问题,重点在于如何求得相对速度,另外,注意单位的换算,1/秒合3.6千米/时。

85:一列快车和一列慢车相向而行,快车的车长是280米,慢车的车长是385米,坐在快车上的人看见慢车驶过的时间是11秒,那么坐在慢车上的人看见慢车驶过的时间是多少秒?

分析:慢车上的人看快车和快车上的看慢车,他们看到的相对速度是相同的,这就是本题的关键。

解答:两车相对速度为:385÷11=35(米/秒),慢车上的人看快车驶过的时间为:280÷35=8(秒),即坐在慢车上的人看见快车驶过的时间是8

评注:在错车的问题中,对双方来说相对速度是相同的,不同的是错车的距离和时间,对车上的人,距离一般是对方车长。

86:某列车通过250米长的隧道用25秒,通过210米长的隧道用23秒,问该列车与另一列车长320米,时速64.8千米的列车错车而过需要几秒?

解答:列车通过第一个隧道比通过第二个隧道多走了40米,多用2秒,同此列车速度为:

250210÷2523=20(米/秒),车长为20×25250=250(米),另一辆车时速64.8千米,合18/秒,两车错车需时为:(250320÷2018=15(秒),即两车错车需要15

评注:在火车错车、过桥、过隧道、进站等问题中常常会用到车长作为行进距离的一部分,因此遇到此类问题一定要特别小心。

87:一条电车线路的起点站和终点站分别是甲站和乙站,每隔5分钟有一辆电车从甲站发出开往乙站,全程要走15分钟,有一个人从乙站出发沿电车路线骑车前往甲站,他出发的时候,恰好有一辆电车到达乙站,在路上他又遇到了10辆迎面开来的电车,到甲站时,恰好又有一辆电车从甲站开出,问他从乙站到甲站用了多少分钟?

分析:本题重点在通过电车的数量计算时间。

解答:记骑车人出发时进入乙站的车为第一辆,包括中途遇到车子、骑车人到甲站时出站的车为第十二辆,从第一辆进站到第二辆出站的时间就是骑车人用的时间,由题目条件第一辆车进站的同时,第四辆车正在从甲站出站,第四辆车出站到第十二辆车出站共经过4分钟,因此骑车人从乙站到甲站用了40分钟。

88:甲、乙二人练习跑步,若甲让乙先跑10米,则甲跑5秒钟追上乙,若乙比甲先跑2秒钟,则甲跑4秒钟能追上乙,问:两人每秒各跑多少米?

分析与解答:甲让乙先跑10米,则甲跑5秒可追上乙,也就是甲每秒比乙多跑:10÷5=2(米),乙比甲选跑2秒钟,则甲跑4秒追上乙,也就是说乙比甲先跑了2×4=8(米),因此乙速度为:8÷2=4(米/秒),甲速度为:4÷2=6(米/秒),即甲每秒跑6米,乙每秒跑4

评注:追及问题是关于行程差,速度差及时间关系的问题,它与相遇问题有很多相似的地方,也有不同的地方。

89:甲、乙两地相距600千米,一列客车和一列货车同时由甲地开往乙地,客车比货车早到2.5小时,客车到达乙地时货车行驶了全程的4/5,问货车行驶全程需要多少时间?

分析:考虑在客车到达后,货车行驶的情况。

解答:客车到达后,货车又行驶了2.5小时,走了全程的1/5,因此货车走全程需要2.5÷1/5=12.5(小时),即货车行驶全程要12.5小时

90:两辆拖拉机为农场送化肥,第一辆以每小时9千米的速度由仓库开往农场,30分钟后,第二辆以每小时12千米的速度由仓库开往农场,问:1)第二辆追上第一辆的地点距仓库多远?2)如果第二辆比第一辆早到农场20分钟,仓库到农场的路程有多远?

分析:这个追及问题重点在于找到路程之差。

解答:1)第二辆拖拉机出发时第一辆相差:9×0.5=4.5(千米),第二辆追上第一辆需要时间为:4.5÷(129)=1.5(小时),此时第二辆行程为:12×1.5=18(千米),即追上第一辆地点距仓库18千米;2)第二辆到达农场时,与第一辆相距:9×1/3=3(千米),第二辆从追上第一辆到达农场用时:129=1(小时),农场与仓库距离为:18÷12×1=30(千米),即农场与仓库距离30千米。

评注:追及问题有许多先后出发,先后到达的情形,这种情况下求时间和路程时一定要仔细考虑是谁的行进情况,不要弄反了。

91:甲、乙两匹马在相距50米的地方同时同向出发,出发时甲马在前,乙马在后,如果甲马每秒跑10米,乙马每秒跑12米,问:何时两地相距70米?

分析:先分析两马行进的大概情况,甲马较慢在前面,乙马较快在后面,开始后乙马追近甲马并超过它,再拉远距离因此相距70米是在乙马超过甲马后出现的。

解答:追及时间为:(5070÷1210=60(秒),即60秒后两马相距70米。

92:甲、乙二人在操场的400米跑道上练习竞走,两人同时出发,出发时甲在乙的后面,出发后6分钟甲第一次追上乙,22分钟时甲第二次追上乙,假设两人速度都保持不变,问:出发时甲在乙身后多少米?

分析:环形跑道上的追及问题,两次超过之间甲比乙多走一圈,这是重点。

解答:甲比乙快,他们的速度差为:440÷226=25(米/分钟),出发时,两人相距为:25×6=150(米),即出发时甲在乙后150

评注:环形跑道上的追及问题,可以多次追上并超越,利用这一点是这类题目的关键。

93:铁路线旁边有一条沿铁路方向的公路,公路上一辆汽车正以每小时40千米的速度行驶,这时一列长375米的火车以每小时67千米的速度从后面开过来,问:火车从车头到车尾经过汽车旁边需要多少时间?

分析:铁路上的追及问题与相遇问题中的错车问题相似。

解答:从汽车上看火车速度为6740=27(千米/时)合7.5/秒,火车通过需时间为:375÷7.5=50(),即火车通过需50

评注:在追及式的错车问题中,车长往往就是路程差。

94:小红在9点到10点之间开始解一道题,当时时针和分针正好成一条线,当小解完题时,时针和分针刚好重合,小红解这道题用了多少时间?

分析:同向转动的时针和分针可以看作一个追及问题,以一圈为60格,时针12分钟走一格,每分钟走1/12格,分针每分钟一格。

解答:几点时时针与分针差45格,分针在后,成一条线时,时针比分针快30个格,这时从九点过了的时间为:(4530÷11/12=180/11=164/11(分钟),两针重合时,从九点开始经过的时间为:45÷11/12=540/11=491/11(分钟),相差的时间为:491/11164/11=328/11(分钟),即小红解题用了328/11分钟

评注:时钟上的追及问题需要注意路程以格代替,不要与时间混在一起。

95:游船顺流而下每小时前进7千米,逆流而上每小时前进5千米,两条游船同时从同一地点出发,一条顺流而下然后返回,一条逆流而上然后返回,结果1小时后它们同时回到出发点,如果忽略游船调头的时间不计,在1小时内两条游船有多长时间前进的方向相同?是顺流还是逆流?

分析:两条船用时一样,说明它们顺流,逆流的时间分别相同,区别在一条先顺流再逆流,另一条则相反。

解答:顺流、逆流速度之比为75,则时间比为57,轮船顺流时间为5/12小时,逆流时间为7/12小时,顺流的船先调头,然后有1/6小时两船同时逆流而行,然后先逆流的船调头

评注:在相同条件下,无论先顺流或逆流船在相同距离内往返行驶,时间相同,同样的,时间相同,则往返距离也相同。

96:一只猎狗追前方20米处的兔子,已知狗一跳前进3米,兔子一跑前进2.1米,狗跑3次的时间兔子跳4次,问:兔子跑出多远将被狗追上?

分析:狗和兔子每跳的时间距离都不同,我们需要统一一项才能进行比较。

解答:由题目条件知狗前进9米时,兔子前进8.4米,20÷98.4=331/3,以狗前进9米,兔子前进8.4米计为一次,则331/3次后狗追上兔子,这时兔子跑了:8.4×331/3=280(米),即兔子跑了280米后被狗追上。

评注:速度的比较并不一定是每秒、每分、每小时前进距离的比较,相同一段时间内前进距离即可作为速度比较。

97:学校组织军训,甲、乙、丙三人步行从学校到军训驻地,甲、乙两人早晨6点一起从学校出发,甲每小时走5千米,乙每小时走4千米,丙上午8点才从学校出发,下午6点,甲、丙同时到达军训驻地,问:丙何时追上乙?

分析:求丙追上乙的时间,必须知道乙、丙的速度,丙的速度由他与甲的行进状况可求。

解答:甲走了12个小时,全程为:5×12=60(千米),丙走了10个小时,他的速度为:60÷10=6(千米/时),丙出发时与乙的距离为:4×2=8(千米/时),丙追上乙需用时间为:64=4(小时),因此中午12时丙追上乙。

评注:追及问题中的速度差与距离差都非常重要。

98:骑车人以每分钟300米的速度沿公共汽车路线前进,当人离始发站3000米时,一辆公共汽车从始发站出发,它的速度为每分钟700米,并且每行3分钟到达一站停车1分钟,问公共汽车多长时间追上骑车人?

分析:汽车在某两站之间追上骑车人,那么在前一站骑车人先到达,后一站汽车先到达。

解答:列表确定汽车在哪段时间追上骑车人。

到站时间(分钟)

始发站

1

2

3

骑车人

/

/

4

11

0

3

7

11

A.由表中可见汽车在恰好到达第三站时追上骑车人,这时汽车走了11分钟。

评注:注意在计算汽车行程时不要按照出站时间算,而要计算入站时间。

99:甲、乙、丙三人的步行速度分别为每分钟60米、50米和40米,甲从B地,乙和丙从A地同时出发相向而行,途中甲遇到乙后15分钟又遇到丙,求AB两地距离。

分析:根据已知条件,分析从甲、乙相遇到甲、丙相遇的这段情况。

解答:从甲、乙相遇开始,甲丙相向而行,是相遇问题,距离为:(6040×15=1500(米),甲、乙相遇时甲、丙相距1500米,也就是乙丙相距1500米,乙、丙同向是一个追及问题,到甲、乙相遇为止,乙、丙走了:1500÷5040=150(分钟),这同时也是甲、乙相遇运动的时间,因此AB距离为:(6050×150=16500(米),合16.5千米,即AB相距16.5千米。

100:小王回家,距家门口310米时,妹妹和小狗一起向他奔来,小王和妹妹的速度都是每分钟50米,小狗的速度是每分钟200米,小狗遇到小王后用同样的速度不停往返于小王和妹妹之间。当小王和妹妹相距10米时,小狗一共跑了多少米?

101:有甲、乙、丙三人同时同地出发,绕一个花圃行走,乙、丙二人同方向行走,甲与乙、丙相背而行。甲每分钟走40米,乙每分钟走38米,丙每分钟走36米。在途中,甲和乙相遇后3分钟和丙相遇。问:这个花圃的周长是多少米?

  分析:这个三人行程的问题由两个相遇、一个追击组成,题目中所给的条件只有三个人的速度,以及一个“3分钟的时间。第一个相遇:在3分钟的时间里,甲、丙的路程和为(40+36×3=228(米) 第一个追击:这228米是由于在开始到甲、乙相遇的时间里,乙、丙两人的速度差造成的,是逆向的追击过程,可求出甲、乙相遇的时间为228÷38-36=114(分钟)第二个相遇:在114分钟里,甲、乙二人一起走完了全程

所以花圃周长为(40+38×114=8892(米)

  

爱华网本文地址 » http://www.413yy.cn/a/25101014/225459.html

更多阅读

模具开发制作合同中的法律问题 模具制作合同书

赵江华金华电话:18367925696QQ:774767210冲压和拉伸是机械加工中一种常见的加工方法,其最大的优点是生产效率高,能满足大批量生产的要求。同时,冲压和拉伸对模具提出较高要求。本文以金华永康附近的炊具行业为基础,探讨模具开发制作中的

沈卫国:康托对角线法中的逻辑问题详析4

康托对角线法中的逻辑问题详析(4)沈卫国八、康托定理与康托对角线法的同构性分析康托定理在集合论中的地位毋庸讳言。其与对角线法的关系,早被论及。但笔者一直似未见具体分析。笔者早年的著作中,对此曾有分析。笔者甚至怀疑,有人也许

转:关于小学数学左右概念教学的研究

一、为什么将左右概念纳入小学数学课程 我们知道,原来的小学数学,一般都把左右概念当作日常生活用语,或者说当作不加定义的原名,而不是作为数学概念来引入并使用的。自从义务教育阶段《数学课程标准》(实验稿)颁布以来,左右概念进人了小

小学数学兴趣小组活动总结 热闹的反义词

小学数学兴趣小组活动总结数学是神奇的世界,肯定有不少学生产生了浓厚的兴趣。为此,训练学生的思维活动是重中之重。数学思维活动在数学教学课堂中探求问题的思考、推理、论证的过程等一系列数学活动都是数学教学中实施思维训练的理论

声明:《小学数学行程问题 行程问题中的停歇问题》为网友因为帅分享!如侵犯到您的合法权益请联系我们删除