课题: 1.2.3 相反数 1.2.3相反数课件

课题: 1.2.3 相反数 授课时间:____________

教学目标

1、 掌握相反数的概念,进一步理解数轴上的点与数的对应关系;

2、 通过归纳相反数在数轴上所表示的点的特征,培养归纳能力;

3、 体验数形结合的思想。

教学难点

归纳相反数在数轴上表示的点的特征

知识重点

相反数的概念

教学过程(师生活动)

设计理念

设置情境

引入课题

问题1:请将下列4个数分成两类,并说出为什么要这样分类

4, -2,-5,+2

允许学生有不同的分法,只要能说出道理,都要难予鼓励,但教师要做适当的引导,逐渐得出5和-5,+2和-2分别归类是具有较特征的分法。

(引导学生观察与原点的距离)

思考结论:教科书第13页的思考

再换2个类似的数试一试。

归纳结论:教科书第13页的归纳。

以开放的形式创设情境,以学生进行讨论,并培养分类的能力

培养学生的观察与归纳能力,渗透数形思想

深化主题提炼定义

给出相反数的定义

问题2:你怎样理解相反数定义中的“只有符号不同”和“互为”一词的含义?零的相反数是什么?为什么?

学生思考讨论交流,教师归纳总结。

规律:一般地,数a的相反数可以表示为-a

思考:数轴上表示相反数的两个点和原点有什么关系?

练一练:教科书第14页第一个练习

体验对称的图形的特点,为相反数在数轴上的特征做准备。

深化相反数的概念;“零的相反数是零”是相反数定义的一部分。

强化互为相反数的数在数轴上表示的点的几何意义

给出规律

解决问题

问题3:-(+5)和-(-5)分别表示什么意思?你能化简它们吗?

学生交流。

分别表示+5和-5的相反数是-5和+5

练一练:教科书第14页第二个练习

利用相反数的概念得出求一个数的相反数的方法
课题: 1.2.3 相反数 1.2.3相反数课件

小结与作业

课堂小结

1、相反数的定义

2、互为相反数的数在数轴上表示的点的特征

3、 怎样求一个数的相反数?怎样表示一个数的相反数?

本课作业

1、 必做题 教科书第18页习题1.2第3题

2、选做题 教师自行安排

本课教育评注(课堂设计理念,实际教学效果及改进设想)

1、相反数的概念使有理数的各个运算法则容易表述,也揭示了两个特殊数的特征.这两个特殊数在数量上具有相同的绝对值,它们的和为零,在数轴上表示时,离开原点的距离相等等性质均有广泛的应用.所以本教学设计围绕数量和几何意义展开,渗透数形结合的思想.

2、教学引人以开放式的问题人手,培养学生的分类和发散思维的能力;把数在数轴上表示出来并观察它们的特征,在复习数轴知识的同时,渗透了数形结合的数学方法,数与形的相互转化也能加深对相反数概念的理解;问题2能帮助学生准确把握相反数的概念;问题3实际上给出了求一个数的相反数的方法.

3、本教学设计体现了新课标的教学理念,学生在教师的引导下进行自主学习,自主探究,观察归纳,重视学生的思维过程,并给学生留有发挥的余地.

课题: 1.2.4 绝对值 授课时间:___________

教学目标

1、掌握绝对值的概念,有理数大小比较法则.

2、学会绝对值的计算,会比较两个或多个有理数的大小.

3、体验数学的概念、法则来自于实际生活,渗透数形结合和分类思想.

教学难点

两个负数大小的比较

知识重点

绝对值的概念

教学过程(师生活动)

设计理念

设置情境

引入课题

星期天黄老师从学校出发,开车去游玩,她先向东行20千米,到朱家尖,下午她又向西行30千米,回到家中(学校、朱家尖、家在同一直线上),如果规定向东为正,①用有理数表示黄老师两次所行的路程;②如果汽车每公里耗油0.15升,计算这天汽车共耗油多少升?

学生思考后,教师作如下说明:

实际生活中有些问题只关注量的具体值,而与相反

意义无关,即正负性无关,如汽车的耗油量我们只关心汽车行驶的距离和汽油的价格,而与行驶的方向无关;

观察并思考:画一条数轴,原点表示学校,在数轴上画出表示朱家尖和黄老师家的点,观察图形,说出朱家尖黄老师家与学校的距离.

学生回答后,教师说明如下:

数轴上表示数的点到原点的距离只与这个点离开原点的长度有关,而与它所表示的数的正负性无关;

一般地,数轴上表示数a的点与原点的距离叫做数a的绝对值,记做|a|

例如,上面的问题中|20|=20,|-10|=10显然,|0|=0

这个例子中,第一问是相反意义的量,用正负数表示,后一问的解答则与符号没有关系,说明实际生活中有些问题,人们只需知道它们的具体数值,而并不关注它们所表示的意义.为引入绝对值概念做准备.并使学生体验数学知识与生活实际的联系.

因为绝对值概念的几何意义是数形转化的典型

模型,学生初次接触较难接受,所以配置此观察与思考,为建立绝对值概念作准备.

合作交流

探究规律

例1求下列各数的绝对值,并归纳求有理数a的绝对

有什么规律?、

-3,5,0,+58,0.6

要求小组讨论,合作学习.

教师引导学生利用绝对值的意义先求出答案,然后观察原数与它的绝对值这两个数据的特征,并结合相反数的意义,最后总结得出求绝对值法则(见教科书第15页).

巩固练习:教科书第15页练习.

其中第1题按法则直接写出答案,是求绝对值的基本训练;第2题是对相反数和绝对值概念进行辨别,对学生的分析、判断能力有较高要求,要注意思考的周密性,要让学生体会出不同说法之间的区别.

求一个数的绝时值的法则,可看做是绝对值概

念的一个应用,所以安排此例.

学生能做的尽量让学生完成,教师在教学过程中只是组织者.本着这个理念,设计这个讨论.

结合实际发现新知

引导学生看教科书第16页的图,并回答相关问题:

把14个气温从低到高排列;

把这14个数用数轴上的点表示出来;

观察并思考:观察这些点在数轴上的位置,并思考它们与温度的高低之间的关系,由此你觉得两个有理数可以比较大小吗?

应怎样比较两个数的大小呢?

学生交流后,教师总结:

14个数从左到右的顺序就是温度从低到高的顺序:

在数轴上表示有理数,它们从左到右的顺序就是从小到大的顺序,即左边的数小于右边的数.

在上面14个数中,选两个数比较,再选两个数试试,通过比较,归纳得出有理数大小比较法则

想象练习:想象头脑中有一条数轴,其上有两个点,分别表示数一100和一90,体会这两个点到原点的距离(即它们的绝对值)以及这两个数的大小之间的关系.

要求学生在头脑中有清晰的图形.

让学生体会到数学的规定都来源于生活,每一种规定都有它的合理性。数在大小比较法则第2点学生较难掌握,要从绝对值的意义和数轴上的数左小右大这方面结合起来来了解,所以配置想象练习 ,加强数与形的想象。

课堂练习

例2、比较下列各数的大小(教科书第17页例)比较大小的过程要紧扣法则进行,注意书写格式练习:第18页练习

小结与作业

课堂小结

怎样求一个数的绝对值,怎样比较有理数的大小?

本课作业

1、 必做题:教产书第19页习题1,2,第4,5,6,10

2、 选做题:教师自行安排

本课教育评注(课堂设计理念,实际教学效果及改进设想)

1、情景的创设出于如下考虑:①体现数学知识与生活实际的紧密联系,让学生在这些熟悉的日常生活情境中获得数学体验,不仅加深对绝对值的理解,更感受到学习绝对值概念的必要性和激发学习的兴趣.②教材中数的绝对值概念是根据几何意义来定义的(其本质是将数转化为形来解释,是难点),然后通过练习归纳出求有理数的绝对值的规律,如果直接给出绝对值的概念,灌输知识的味道很浓,且太抽象,学生不易接受.

2、 一个数绝对值的法则,实际上是绝对值概念的直接应用,也体现着分类的数学思想,所以直接通过例1归纳得出,显得非常紧凑,是教学重点;从知识的发展和学生的能力培养角度来看,教师应更重视学生的自主学习和探究的过程,关注学生的思维,做好教学的组织和引导,留给学生足够的空间。

3、 有理数大小的比较法则是大小规定的直接归纳,其中第(2)条学生较难理解,教学中要结合绝对值的意义和规定:“在数轴上表示有理数,它们从左到右的顺序就是从小到大的顺序”,帮助学生建立“数轴上越左边的点到原点的距离越大,所以表示的数越小”这个数形结合的模型.为此设置了想象练习.

4、本节课的内容包括绝对值的概念和数的绝对值的求法、有理数大小比较的法则,教学内容很多,学生接受起来可能会有困难,建议把有理数的大小比较移到下节课教学。

1.3 有理数的加减法 授课时间:____________

1.3.1 有理数的加法(1)

【教学目标】

1.理解有理数加法的实际意义;

2.会作简单的加法计算;

3.感受到原来用减法算的问题现在也可以用加法算.

【对话探索设计】

〖探索1〗

(1)某仓库第一天运进300吨化肥,第二天又运进200吨化肥,两天一共运进多少吨?

(2)某仓库第一天运进300吨化肥,第二天运出200吨化肥,两天总的结果一共运进多少吨?

(3)某仓库第一天运进300吨化肥,第二天又运进-200吨化肥, 两天一共运进多少吨?

(4)把第(3)题的算式列为300+(-200),有道理吗?

(5)某仓库第一天运进a吨化肥,第二天又运进b吨化肥,两天一共运进多少吨?

〖探索2〗

如果物体先向右运动,再向右运动,那么两次运动后总的结果是什么?

假设原点为运动起点,用下面的数轴检验你的答案.

在足球比赛中,通常把进球数记为正数,失球数记为负数,它们的和叫做净胜球数.若某场比赛红队胜黄队5:2(即红队进5个球,失2个球),红队净胜几个球?

〖小游戏〗

(请一位同学到黑板前)前进5步,又前进-3步, 那么两次运动后总的结果是什么?若是后退-1步,又后退3步呢?

〖练习〗

1.登山队员第一天向上攀登,第二天又向上攀登(天气恶劣!),两天一共向上攀登多少米?

2.第一天营业赢利90元,第二天亏本80元,两天一共赢利多少元?

〖补充作业〗

1.分别用加法和减法的算式表示下面每小题的结果(能求出得数最好):

(1)温度由下降; (2)仓库原有化肥200t,又运进-120t;

(3)标准重量是,超过标准重量; (4)第一天盈利-300元, 第二天盈利100元.

2.借助数轴用加法计算:

(1)前进,又前进, 那么两次运动后总的结果是什么?

(2)上午8时的气温是,下午5时的气温比上午8时下降, 下午5时的气温是多少?

3.某潜水员先潜入水下,他的位置记为.然后又上升,这时他处在什么位置?

1.3.1 有理数的加法(2) 授课时间:____________

【教学目标】

1.进一步理解有理数加法的实际意义;

2.经历探索有理数加法法则的过程,理解有理数加法法则;

3.感受数学模型的思想;

4.养成认真计算的习惯.

【对话探索设计】

〖探索1〗

1.第一天赢利,第二天还赢利,两天合起来算,是赢利还是亏本?

2.第一天亏本,第二天还是亏本,两天合起来算,是赢利还是亏本?

3.一个物体作左右方向的运动,规定向右为正.如果物体先向左运动,再向左运动, 那么两次运动后总的结果是什么?

假设原点为运动起点,用数轴检验你的答案.

〖法则理解〗

有理数加法法则第1条是:同号两数相加,取___________,并把绝对值_________.

这条法则包括两种情况:

(1)两个正数相加,显然取正号,并把绝对值相加,例(+3)+(+5)=+8;

(2)两个负数相加,取_____号,并把______相加.例如(-3)+(-5) = -(3+5) = -8.答案"-8"之所以取"-"号,是因为______________,"8"是由_____的绝对值和______的绝对值相______而得.

〖练习〗

1.上午6时的气温是,下午5时的气温比上午6时下降, 下午5时的气温是多少?

2.第一场比赛红队胜黄队5:2,第二场比赛蓝队胜黄队3:1, 两场比赛黄队净胜几个球?

3.第一天向北走,第二天又向北走,两天一共向北走多少km?

4.仿照(-3)+(-5) = -(3+5)= -8的格式解答:

(1)-10+(-30)=

(2)(-100)+(-200) =

(3)(-188)+(-309)=

〖探索2〗

1.第一天营业赢利90元,第二天亏本80元,两天一共赢利多少元?如果第二天亏本120元呢?

2.第一天赢利,第二天亏本,两天合起来算,是赢利还是亏本?

3.正数和负数相加,结果是正数还是负数?

〖法则理解〗

有理数加法法则第2条的前半部分是:绝对值不相等的异号两数相加,取_________________的符号,并用_______________减去_________________.

例如(+6)+(-2) = +(6-2) = +4.答案"+4"之所以取"+"号,是因为两个加数(+6与-2)中________的绝对值较大;答案"+4"的绝对值4是由加数中较大的绝对值______减去较小的绝对值____得到.

又例,计算(-8)+(+3)时,先取______号,这是因为两个加数中,______的绝对值较大.然后再用较大的绝对值____减去较小的绝对值____,得_____,于是最后得到答案是______.计算的过程可以写成(-8)+(+3) = -(8-3) = -5.

〖议一议〗

有人说,正数和负数相加时,实质就是把加法运算转化为”小学”的减法运算.他说的对不对?

〖练习〗

1.第一场比赛红队胜黄队5:2,第二场比赛黄队胜蓝队3:1, 两场比赛黄队净胜几个球?

2.如果物体先向右运动,再向右运动,那么两次运动后总的结果是什么?

3. 检查3包洗衣粉的重量(单位:克), 把其中超过标准重量的数量记为正数,不足的数量记作负数,结果如下:

-3.5,+1.2,-2.7.

这3包洗衣粉的重量一共超过标准重量多少?

4.仿照(-8)+(+3) =-(8-3) = -5的格式解题:

(1)(-3)+(+8)=

(2)-5+(+4)=

(3)(-100)+(+30)=

(4)(-100)+(+109)=

〖法则理解〗

有理数加法法则第2条的后半部分是:互为相反数的两个数相加得_____.

例如(+3)+(-3) = ______,(-108)+(+108) = ______.

〖例题学习〗

P21.例1,例2

P22.练习2(按例1格式算.)

〖作业〗

P29.习题 1, P32.习题 8,9,10

【备选素材】

用一个□表示+1,用一个■表示-1.显然□+■=0,

(1)■■+□□□=(■+□)+(■+□)+ □=_____.

这表明-2+3=+(3-2)=1.

想一想:答案为什么是正的?为什么转化为减法运算?

(2)计算■■■■■+□□□□□=_____.

(3)计算■■■■■+□□=(■■+□□)+ ■■■=______.

这说明-5+(+2)=-(___-___)=_______.

(4)计算■■■+□□□□□=?

1.3.1 有理数的加法(3) 授课时间:____________

【教学目标】

1.理解有理数加法的运算律;

2.能用运算律简化有理数加法的运算.

【对话探索设计】

〖复习导入〗

1.小学时已学过的加法运算律有哪几条?

2.猜一猜:在有理数的加法中,这两条运算律仍然适用吗?

3.(1)计算30+(-20)=__________=______,-20+30=___________=_____;

(2)[8+(-5)]+(-4)=_______=______, 8+[(-5)+(-4)]=_______=______.

你猜对了吗?

〖试一试〗

你会用文字表述加法的两条运算律吗?

你会用字母表示加法的这两条运算律吗?

〖例题学习〗

P22.例3

〖例题探索〗

P23.例4.

你认为例4的两种解法哪一种比较好?

〖练习〗

P23.练习1

〖作业〗

P23.练习2,P30.习题2

【备用素材】

1.(1) 两个数都是负数,它们的和一定是负数吗?为什么?

(2) 两个数的和是负数,这两个数一定都是负数吗?为什么?

2.(1)在一场足球比赛中,红队以4:1胜黄队,这说明红队进_____球,失______球,净胜_______球;而黄队则进_____球,失______球,净胜_______球.

(2)某赛季,申花足球队第一场比赛赢了2个球(5比3);第二场比赛输了3个球(1比4),两场比赛该队净胜几个球?

3.某地,去年9月1日的平均气温是28℃,第二天平均气温比第一天上升了2℃,第三天平均气温比第二天上升了-5℃(下暴雨!),问第三天平均气温是多少,请画出(温度计)示意图.

4.各举两个反例说明以下的说法是错误的:

(1)两个有理数相加,和一定大于每一个加数.

(2)两个数的和是0,这两个数都是0.

*(3)若a>0,b<0,且|a|<|b|,则a+b=-(|a|-|b|).

5.(1)小学所遇到的加法运算,两个加数的和会小于任何一个加数吗?

(2)a+b会小于a吗?为什么?

6.若用Δ表示+10,用▲表示-10,用◇表示+1,用◆表示-1.

则ΔΔ◇◇◇表示_________;▲▲▲▲▲◆◆◆◆表示_______.

ΔΔ◇◇◇+▲▲▲▲▲◆◆◆◆=(ΔΔ+▲▲)+( ◇◇◇+◆◆◆)+_____________=_________________.结果表示的数是_______.

7.有一批食品罐头,标准质量为每听454克.现抽取10听样品进行检测,结果如下表(单位:克):

听号

1

2

3

4

5

6

7

8

9

10

质量

444

459

454

459

454

454

449

454

459

464

若把超过标准质量的克数y用正数表示,不足的用负数表示,依照上表的数据列出这10听罐头与标准质量的差值表(单位:克):

听号

1

2

3

4

5

6

7

8

9

10

y

分别用上面两个表格的数据求出10听罐头的总质量,比较这两种方法.

8.小钱上周五以收盘价买进股票1000股,每股20元.下表为本周每日股票的涨跌情况(按收盘价即交易结束时的价格计算):

星期











每股涨价(元)

+0.6

-1.3

+1

+0.7

-2

(1)到本周三收盘时,小钱所持股票每股多少元?

(2)本周内,股票最高价出现在星期几?是多少元?

(3)已知小钱买进股票时付了4‰的手续费,卖出时又付成交额4‰的手续费和3‰的交易税,如果小钱在本周末以收盘价卖出全部股票,他的收益如何?

9.小京同学在计算16+(-24)+22+(-17)+(-56)+56时, 利用加法交换律、结合律先把正负数分别相加,得16+22+56+[(-24)+(-17)+(-56)].你认为这样算能使运算简便吗?你认为还有其它方法吗?

10.用简便方法计算:

(1)1033.78+(-26)+(-39)+(-38);

(2)12.7+(-24.6)+(-29.1)+6.8;

(3)1.3+0.5+(-0.5)+0.3+(-0.7)+3.2+(-0.3)+0.7;

(4)(-109)+(-267)+(+108)+268;

  

爱华网本文地址 » http://www.413yy.cn/a/25101014/189435.html

更多阅读

局域网共享:1 XP局域网共享设置

局域网共享:[1]XP局域网共享设置——简介局域网共享是个头疼的问题,只要找到的正确的设置方法,其实也很简单。原版也需要设置,否则也不能进行共享!局域网共享:[1]XP局域网共享设置——前提工作局域网共享:[1]XP局域网共享设置 1、更改不同

防御阵型觉醒攻略:1 第一关

防御阵型觉醒攻略:[1]第一关——简介防御阵型这款塔防游戏,无论从游戏画面、可玩性来说都堪称经典。塔防类游戏爱好者千万不要错过。防御阵型觉醒攻略:[1]第一关——工具/原料防御阵型觉醒防御阵型觉醒攻略:[1]第一关——方法/步骤防御

滴水观音的养殖方法:1 叶子发黄了怎么办?

滴水观音的养殖方法:[1]叶子发黄了怎么办?——简介家里的滴水观音植株长得很大,叶片很漂亮,可是,最近个别叶片开始变黄,怎么办呢?我们需要找出原因,想办法解决。滴水观音的养殖方法:[1]叶子发黄了怎么办?——方法/步骤滴水观音的养殖方法:[1]

百厕逃脱2图文攻略:1 1-10关

百厕逃脱2图文攻略:[1]1-10关——简介《百厕逃脱2 100 Toilets 2》是一款解密游戏,百门风格解谜游戏经典厕所题材逃脱游戏第二部作品来了。只要解决厕所密室内的谜题,就能开门逃离到下一个房间!游戏关卡射击巧妙,好好利用所有的道具解决

如何使用手机QQ:1 新建QQ号

如何使用手机QQ:[1]新建QQ号——简介QQ是中国最流行的社交聊天软件如何使用手机QQ:[1]新建QQ号——工具/原料智能手机QQ软件如何使用手机QQ:[1]新建QQ号——方法/步骤如何使用手机QQ:[1]新建QQ号 1、打开手机QQ,点击“新用户”如何使用

声明:《课题: 1.2.3 相反数 1.2.3相反数课件》为网友浑身病态分享!如侵犯到您的合法权益请联系我们删除