宇宙的起源:

宇宙的起源宇宙起源百科名片

宇宙奇观宇宙是广漠空间和其中存在的各种天体以及弥漫物质的总称。 宇宙是物质世界,它处于不断的运动和发展中。《淮南子·原道训》 注:“四方上下曰宇,古往今来曰宙,以喻天地。”即宇宙是天地万物的总称。千百年来,科学家们一直在探寻宇宙是什么时候、如何形成的。直到今天,科学家们才确信,宇宙是由大约137亿年前发生的一次大爆炸形成的。

在爆炸发生之前,宇宙内的所存物质和能量都聚集到了一起,并浓缩成很小的体积,温度极高,密度极大(称为奇点),瞬间产生巨大压力,之后发生了大爆炸,这次大爆炸的反应原理被物理学家们称为量子物理(至今没有被解决)。大爆炸使物质四散出去,宇宙空间不断膨胀,温度也相应下降,后来相继出现在宇宙中的所有星系、恒星、行星乃至生命,都是在这种不断膨胀冷却的过程中逐渐形成的物体。然而,因大爆炸而产生宇宙的理论尚不能确切地解释,“在所存物质和能量聚集在一点上”之前到底 淮南子·原道训

存在着什么东西? “大爆炸理论”是伽莫夫于1946年创建的。   关于宇宙是如何起源的?空间和时间的本质是什么?这是从2000多年前的古代哲学家到现代天文学家一直都在苦苦思索的问题。经过了哥白尼、赫歇尔、哈勃的从太阳系、银河系、河外星系的探索宇宙三部曲,宇宙学已经不再是幽深玄奥的抽象哲学思辨,而是建立在天文观测和物理实验基础上的一门现代科学。   直到20世纪,出现了两种“宇宙模型”比较有影响。一是稳态理论,一是大爆炸理论。20世纪20年代后期,爱德温·哈勃发现了红移现象,说明宇宙正在膨胀。20世纪60年代中期,阿尔诺·彭齐亚斯和罗伯特·威尔逊(Robert Wilson)发现了“宇宙微波背景辐射”。这两个发现给大爆炸理论以有力的支持。现在,大爆炸理论广泛地为人们所接受。

现代宇宙系当中最有影响的一种学说,又称大爆炸宇宙学。与其他宇宙模型相比,它能说明较多的观 大爆炸宇宙学图解

测事实。它的主要观点是认为我们的宇宙曾有一段从热到冷的演化历程。在这个时期里,宇宙体系并不是静止的,而是在不断地膨胀,使物质密度从密到稀地演化。这一从热到冷、从密到稀的过程如同一次规模巨大的爆发。根据大爆炸宇宙学的观点,大爆炸的整个过程是:在宇宙的早期,温度极高,在100亿度以上。物质密度也相当大,整个宇宙体系达到平衡。宇宙间只有中子、质子、电子、光子和中微子等一些基本粒子形态的物质。但是因为整个体系在不断膨胀,结果温度很快下降。当温度降到10亿度左右时,中子开始失去自由存在的条件,它要么发生衰变,要么与质子结合成重氢、氦等元素;化学元素就是从这一时期开始形成的。温度进一步下降到100万度后,早期形成化学元素的过程结束(见元素合成理论)。宇宙间的物质主要是质子、电子、光子和一些比较轻的原子核。当温度降到几千度时,辐射减退,宇宙间主要是气态物质,气体逐渐凝聚成气云,再进一步形成各种各样的恒星体系,成为我们今天看到的宇宙。大爆炸模型能统一地说明以下几个观测事实:   (1)大爆炸理论主张所有恒星都是在温度下降后产生的,因而任何天体的年龄都应比自温度下降至今天这一段时间为短,即应小于200亿年。各种天体年龄的测量证明了这一点。   (2)观测到河外天体有系统性的谱线红移,而且红移与距离大体成正比。如果用多普勒效应来解释,那么红移就是宇宙膨胀的反映。   (3)在各种不同天体上,氦丰度相当大,而且大都是30%。用恒星核反应机制不足以说明为什么有如此多的氦。而根据大爆炸理论,早期温度很高,产生氦的效率也很高,则可以说明这一事实。   (4)根据宇宙膨胀速度以及氦丰度等,可以具体计算宇宙每一历史时期的温度。大爆炸理论的创始人之一伽莫夫曾预言,今天的宇宙已经很冷,只有绝对温度几度。1965年,果然在微波波段上探测到具有热辐射谱的微波背景辐射,温度约为3K。   大爆炸理论认为,宇宙起源于一个单独的无维度的点,即一个在空间和时间上都无尺度但却包含了宇宙全部物质的奇点。至少是在120~150亿年以前,宇宙及空间本身由这个点爆炸形成。   目前学术界影响较大的“大爆炸宇宙论”是1927年由比利时数学家勒梅特提出的,他认为最初宇宙的物质集中在一个超原子的“宇宙蛋”里,在一次无与伦比的大爆炸中分裂成无数碎片,形成了今天的宇宙。1948年,俄裔美籍物理学家伽莫夫等人,又详细勾画出宇宙由一个致密炽热的奇点于150亿年前一次大爆炸后,经一系列元素演化到最后形成星球、星系的整个膨胀演化过程的图像。但是该理论存在许多使人迷惑之处。   宏观宇宙是相对无限延伸的。“大爆炸宇宙论”关于宇宙当初仅仅是一个点,而它周围却是一片空白,即将人类至今还不能确定范围也无法计算质量的宇宙压缩在一个极小空间内的假设只是一种臆测。况且从能量与质量的正比关系考虑,一个小点无缘无故地突然爆炸成浩瀚宇宙的能量从何而来呢?   人类把地球绕太阳转一圈确定为衡量时间的标准——年。但宇宙中所有天体的运动速度都是不同的,在宇宙范围,时间没有衡量标准。譬如地球上东西南北的方向概念在宇宙范围就没有任何意义。既然年的概念对宇宙而言并不存在,大爆炸宇宙论又如何用年的概念去推算宇宙的确切年龄呢?   1929年,美国天文学家哈勃提出了星系的红移量与星系间的距离成正比的哈勃定律,并推导出星系都 美国天文学家哈勃

在互相远离的宇宙膨胀说。哈勃定律只是说明了距离地球越远的星系运动速度越快--星系红移量与星系距离呈正比关系。但他没能发现很重要的另一点--星系红移量与星系质量也呈正比关系。   宇宙中星系间距离非常非常遥远,光线传播因空间物质的吸收、阻挡会逐渐减弱,那些运动速度越快的星系就是质量越大的星系。质量大,能量辐射就强,因此我们观察到的红移量极大的星系,当然是质量极大的星系。这就是被称作“类星体”的遥远星系因质量巨大而红移量巨大的原因。另外那些质量小、能量辐射弱的星系(除极少数距银河系很近的星系,如大、小麦哲伦星系外)则很难观察到,于是我们现在看到的星系大多呈红移。而银河系内的恒星由于距地球近,大小恒星都能看到,所以恒星的红移紫移数量大致相等。   导致星系红移多紫移少的另一原因是:宇宙中的物质结构都是在一定范围内围绕一个中心按圆形轨迹运动的,不是像大爆炸宇宙论描述的从一个中心向四周作放射状的直线运动。因此,从地球看到的紫移星系范围很窄,数量极少,只能是与银河系同一方向运动的,前方比银河系小的星系;后方比银河系大的星系。只有将来研制出更高分辨程度的天文观测仪器才能看到更多的紫移星系。   宇宙中的物质分布出现不平衡时,局部物质结构会不断发生膨胀和收缩变化,但宇宙整体结构相对平衡的状态不会改变。仅凭从地球角度观测到的部分(不是全部)可见星系与地球之间距离的远近变化,不能说明宇宙整体是在膨胀或收缩。就像地球上的海洋受引力作用不断此涨彼消的潮汐现象并不说明海水总量是在增加或减少一样。   1994年,美国卡内基研究所的弗里德曼等人,用估计宇宙膨胀速率的办法计算宇宙年龄时,得出一个80~120亿年的年龄计算值。然而根据对恒星光谱的分析,宇宙中最古老的恒星年龄为140~160亿年。恒星的年龄倒比宇宙的年龄大。   1964年,美国工程师彭齐亚斯和威尔逊探测到的微波背景辐射,是因为布满宇宙空间的各种物质相互之间能量传递产生的效果。宇宙中的物质辐射是时刻存在的,3K或5K的温度值也只是人类根据自己判断设计的一种衡量标准。这种能量辐射现象只能说明宇宙中的物质由于引力作用,在大尺度空间整体分布的相对均匀性和星际空间里确实存在大量我们目前还观测不到的“暗物质”。   至于大爆炸宇宙论中的氦丰度问题,氦元素原本就是宇宙中存在的仅次于氢元素的数量极丰富的原子结构,它在空间的百分比含量和其它元素的百分比含量同样都属于物质结构分布规律中很平常的物理现象。在宇宙大尺度范围中,不仅氦元素的丰度相似,其余的氢、氧……元素的丰度也都是相似的。而且,各种元素是随不同的温度、环境而不断互相变换的,并不是始终保持一副面孔,所以微波背景辐射和氦丰度与宇宙的起源之间看不出有任何必然的联系。   大爆炸宇宙论面临的难题还有,如果宇宙无限膨胀下去,最后的结局如何呢?德国物理学家克劳修斯指出,能量从非均匀分布到均匀分布的那种变化过程,适用于宇宙间的一切能量形式和一切事件,在任何给定物体中有一个基于其总能量与温度之比的物理量,他把这个物理量取名为“熵”,孤立系统中的“熵”永远趋于增大。但在宇宙中总会有高“熵”和低“熵”的区域,不可能出现绝对均匀的状态。所以,那种认为由于“熵”水平的不断升高而达到最大值时,宇宙就会进入一片死寂的永恒状态,最终“热寂”而亡的结局,是把我们现在可观测到的一部分宇宙范围当作整个宇宙的误识。 说的明确一些,当宇宙膨胀到一定程度,所有星系行星会疏离,分子分解至夸克,而至更小.整个宇宙继续膨胀,变成死寂状态.这项预测是根据数百个A1超新星的亮度作出的.   根据天文观测资料和物理理论描述宇宙的具体形态,星系的形态特征对研究宇宙结构至关重要,从星系的运动规律可以推断整个宇宙的结构形态。而星系共有的圆形旋涡结构就是整个宇宙的缩影,那些椭圆、棒旋等不同的星系形态只是因为星系年龄和观测角度不同而产生的视觉效果。   奇妙的螺旋形是自然界中最普遍、最基本的物质运动形式。这种螺旋现象对于认识宇宙形态有着重要的启迪作用,大至旋涡星系,小至DNA分子,都是在这种螺旋线中产生。大自然并不认可笔直的形式,自然界所有物质的基本结构都是曲线运动方式的圆环形状。从原子、分子到星球、星系直到星系团、超星系团无一例外,毋庸置疑,浩瀚的宇宙就是一个大旋涡。因此,确立一个“螺旋运动形态宇宙模型”,比那种作为所有物质总和的“宇宙”却脱离曲线运动模式而独辟蹊径,以直线运动方式从一个中心向四面八方无限伸展的“大爆炸宇宙模型”,更能体现真实的宇宙结构形   还有一点,大爆炸是循环的,有科学家声称:宇宙现在的膨胀达到极点时将又发生一场大爆炸。如同黑洞的形成过程一样,宇宙将变成一个高密度、小体积的球体。缩小到一定程度后,将再次发生大爆炸。根据能量守恒定律,宇宙的能量并没有消亡。但是,却没有人能解释,大爆炸每次循环时间、空间、分子结构等等,都是像上次一样(几千几百亿年以后,又有太阳系,又有地球,又有中国,又有你),还是重新排列(光凭空可以弯曲) 。

编辑本段稳态理论

宇宙起源的问题有点像这个古老的问题:是先有鸡呢,还是先有蛋。换句话说,就是何物创生宇宙,又是何物创生该物呢?也许宇宙,或者创生它的东西已经存在了无限久的时间,并不需要被创生。直到不久之前,科学家们还一直试图回避这样的问题,觉得它们与其说是属于科学,不如说是属于形而上学或宗教的问题,然而,人们在过去几年发现,科学定律甚至在宇宙的开端也是成立的。在那种情形下,宇宙可以是自足的,并由科学定律所完全确定。   关于宇宙是否并如何启始的争论贯穿了整个记载的历史。基本上存在两个思想学派。许多早期的传统,以及犹太教、基督教和伊斯兰教认为宇宙是相当近的过去创生的。(十七世纪时邬谢尔主教算出宇宙诞生的日期是公元前4004年,这个数目是由把在旧约圣经中人物的年龄加起来而得到的。)承认人类在文化和技术上的明显进化,是近代出现的支持上述思想的一个事实。我们记得那种业绩的首创者或者这种技术的发展者。可以如此这般地进行论证,即我们不可能存在了那许久;因为否则的话,我们应比目前更加先进才对。事实上,圣经的创世日期和上次冰河期结束相差不多,而这似乎正是现代人类首次出现的时候。   另一方面,还有诸如希腊哲学家亚里斯多德的一些人,他们不喜欢宇宙有个开端的思想。他们觉得这意味着神意的干涉。他们宁愿相信宇宙已经存在了并将继续存在无限久。某种不朽的东西比某种必须被创生的东西更加完美。他们对上述有关人类进步的诘难的回答是:周期性洪水或者其他自然灾难重复地使人类回到起始状态。

编辑本段两种理论比较

两种学派都认为,宇宙在根本上随时间不变。它要么以现在形式创生,要么以今天的样子维持了无限久。这是一种自然的信念,由于人类生命——整个有记载的历史是如此之短暂,宇宙在此期间从未显著地改变过。在一个稳定不变的宇宙的框架中,它是否已经存在了无限久或者是在有限久的过去诞生的问题,实在是一种形而上学或宗教的问题:任何一种理论都对此作解释。1781年哲学家伊曼努尔·康德写了一部里程碑式的,也是非常模糊的著作《纯粹理性批判》。他在这部著作中得出结论,存在同样有效的论证分别用以支持宇宙有一个开端或者宇宙没有开端的信仰。正如他的书名所提示的,他是简单地基于推理得出结论,换句话说,就是根本不管宇宙的观测。毕竟也是,在一个不变的宇宙中,有什么可供观测的呢?   然而在十九世纪,证据开始逐渐积累起来,它表明地球系及宇宙是其他部分事实上是随时间而变化的。地学家们意识到岩石以及其中的化石的形成需要花费几亿甚至几十亿年的时间。这比创生论者计算的地球年龄长得太多了。由德国物理学家路德维希·玻尔兹曼提出的所谓热力学第二定律还提供了进一步的证据,宇宙中的无序度的总量(它是由称为熵的量所测量的)总是随时间而增加,正如有关人类进步的论证,它暗示只能运行了有限的时间,否则的话,它现在应已退化到一种完全无序的状态,在这种状态下万物都牌相同的温度下。   稳恒宇宙思想所遭遇到的另外困难是,根据牛顿的引力定律,宇宙中的每一颗恒星必须相互吸引。如 牛顿

果是这样的话,它们怎么能维持相互间恒定距离,并且静止地停在那里呢?   牛顿晓得这个问题。在一封致当时一位主要哲学家里查德·本特里的信中,他同意这样的观点,即有限的一群恒星不可能静止不动,它们全部会落某个中心点。然而,他论断道,一个无限的恒星集合不会落到一起,由于不存在任何可供它们落去的中心点。这种论证是人们在谈论无限系统时会遭遇到的陷阱的一个例子。用不同的方法将从宇宙的其余的无限数目的恒星作用到每颗恒星的力加起来,会对恒星是否维持恒常距离给出不同的答案。我们现在知道,其正确的步骤是考虑恒星的有限区域,然后加上在该区域之外大致均匀分布的更多恒星。恒星的有限区域会落到一起,而按照牛顿定律,在该区域外加上更多的恒星不能阻止其坍缩。这样,一个恒星的无限集合不能处于静止不动的状态。如果它们在某一时刻不在作相对运动,它们之间的吸引力会引起它们开始朝相互方向落去。另一种情形是,它们可能正在相互离开,而引力使这种退行速度降低。

编辑本段虫洞喷发说

虫洞喷发说认为:我们现在所生存的宇宙起源于一次时空之门的开启。在许许多多平行宇宙中,有一个极其普通的平行宇宙,在这个宇宙中,质量最大的一个黑洞的不断地吞噬宇宙中的其他天体,它的质量 虫洞喷发说

不断增大,大到其万有引力可以摧毁一切物质形态,首先将其核心变为能量体,能量逐渐积蓄,最终冲破其外壳,向外释放能量,形成虫洞,时空之门打开。当能量释放完全后,虫洞停止喷发,时空之门关闭。而喷出来的高能粒子,经过漫长的演变后,形成了我们现在所生存的宇宙;那个喷发的虫洞则变为先前那个平行宇宙中的一个普通的天体,这也是我们不能找到宇宙的中心的原因。

编辑本段新的怀疑

长期以来,“大爆炸”宇宙诞生理论一直被天文学界普遍认同,但近期哈勃太空望远镜拍摄的宇宙深处的照片却让科学家们对“大爆炸”理论打上了一个重重的问号。   “哈勃”太空望远镜本次拍摄到了一些宇宙深处的星体,这些星体大概形成于宇宙诞生后的5亿年内(约130亿年前)。然而,这些星体的数量却远远少于科学家们原来的估计。   哈勃拍摄的这些照片可以说明以下二点:要么大爆炸发生后恒星物质的形成并没有科学家们原来设想 哈勃太空望远镜

的那么积极,这并不符合现阶段通行的理论;要么当时的物理环境与现在的截然不同。   由安德鲁·邦克博士领导的英国科学家小组在对哈勃拍摄的照片研究后得出了上述令人吃惊的结论。目前,安德鲁-邦克博士要求美国宇航局继续利用“哈勃”望远镜并对其进行升级来进行更深入的研究,以便于解开上述这些迷惑。   根据许多科学家数十年来一贯支持的大爆炸理论,我们的宇宙大约诞生于140亿年前。按照该理论的解释,宇宙形成于140亿年前一个体积极小且密度极大的物质的爆炸,爆炸发生后喷发出物质微粒和能量,也正是从那时起才开始产生了时间和空间、质量和能量。在大爆炸发生前,既没有物质,也没有能量,当然也没有生命。   近年来,大爆炸理论已经不止一次地遭受科学家们的种种怀疑。

编辑本段太阳系形成

太阳系是由受太阳引力约束的天体组成的系统,其最大范围可延伸到约1光年以外。太阳系的主要成员有:太阳(恒星)、八大行星(包括地球)、无数小行星、众多卫星(包括月亮),还有彗星、流星体以及大量尘埃物质和稀薄的气态物质在太阳系中,太阳的质量占太阳系总质量的99.8%,其它天体的质量总和不到太阳系的0.2%。太阳是太阳系的中心天体,它的引力控制着整个太阳系,使其它天体绕太阳公转,太阳系中的八大行星(水星、金星、地球、火星、木星、土星、天王星、海王星)都在接近同一平面的近圆轨道上,朝同一方向绕太阳公转(金星例外)。宇宙有起源也会有消亡,科学家预计,若干亿年后,宇宙会急剧收缩,以至于回到大爆炸以前的相貌。

编辑本段神的创造

盘古开天 中国神话 起初 神创造天地。

经过几个国家众多科学家多年研究,宇宙起源终于有了一个大多数人可以认可的一个结果了。这就是宇宙大爆炸理论。根据这一理论,宇宙是在一次大爆炸中诞生的。这一理论不是凭空设想的,而是有着大量的观测数据证明的。   首先,宇宙大爆炸,其定义阈不明确。何为宇宙?宇是空间,宙是时间。也就是说,宇宙是四维的,向各个方向都是无穷的。既然是无穷的,那么爆炸的起点在什么地方?终止于何时?   如果将宇宙二字改换成银河系或总星系,那么这个理论是成立的。道理很简单,举例说明。如果你问一个人,你何时诞生?他会很准确地回答你,某年、某月、某日、某时、某分诞生的。如果你问他,你身体里某个原子是何时诞生的?我想,任何人也是无法回答的。同样,如果你问一个人,你是怎样诞生的?他会告诉你,是母亲十月怀胎生下的。如果你问他,你身体里的某个中子是怎样诞生的,他是无法回答的。   同理,如果你问太阳系或银河系或总星系是怎样诞生的,科学家可以用大爆炸理论给你答案。如果问宇宙是怎样诞生的,因为宇宙是无限大的,它没有开始的那一天,也不会有终结的那一日。这就像坐标系里的轴。但具体到一个星球、一个星系那就不一样了。也就是说,宇宙的各个局部(也是无穷多个)是在不停地进行着压缩——膨胀(即爆炸)——再压缩——再膨胀这样无休止的循环往复运动中,而各个局部也会有所互动。   所以说宇宙的起源本身是没有起源的,也没有终止的,是自性变现的结果,所谓唯心所现,唯识所变。

虫洞百科名片

宇宙虫洞由阿尔伯特·爱因斯坦提出该理论。简单地说,“虫洞”就是连接宇宙遥远区域间的时空细管。暗物质维持着虫洞出口的敞开。虫洞可以把平行宇宙和婴儿宇宙连接起来,并提供时间旅行的可能性。虫洞也可能是连接黑洞和白洞的时空隧道,所以也叫"灰道"。

目录

简介

来源

相关理论

性质

生产机制自然产生机制

个人假设

爱因斯坦简介

成长履历

重要贡献

相关言论星空 最后的前沿

旅行家的天堂

负能量物质

探险者的地狱

从科幻到现实

关于时间简介

来源

相关理论

性质

生产机制 自然产生机制

个人假设

爱因斯坦 简介

成长履历

重要贡献

相关言论 星空 最后的前沿

旅行家的天堂

负能量物质

探险者的地狱

从科幻到现实

关于时间

展开 编辑本段简介

早在19世纪50年代,已有科学家对“虫洞”作过研究,由于当时历史条件所限,一些物理 虫洞

学家认为,理论上也许可以使用“虫洞”,但“虫洞”的引力过大,会毁灭所有进入的东西,因此不可能用在宇宙航行上。   假如说大家都在一个长方形地广场上,左上角设为A,右上角设为B,右下角设为C,左下角设为D。假设长方形的广场上全是建筑物,你的起点是C,终点是A,你无法直接穿越建筑物,那么只能从C到B,再从B到A。再假设假如长方形的广场上什么建筑物都没了,那么你可以直接从C到A,这是对于平面来说最近的路线。但是假如说你进入了一个虫洞,你可以直接从C到A,连原本最短到达的距离也不需要了。这就是所谓的虫洞。但是由于虫洞引力过大,人无法通过虫洞来实现“瞬间移动”的可能,如同超时空转换。   随着科学技术的发展,新的研究发现,“虫洞”的超强力场可以通过“负质量”来中和,达到稳定“虫洞”能量场的作用。科学家认为,相对于产生能量的“正物质”,“反物质”也拥有“负质量”,可以吸去周围所有能量。像“虫洞”一样,“负质量”也曾被认为只存在于理论之中。不过,目前世界上的许多实验室已经成功地证明了“负质量”能存在于现实世界,并且通过航天器在太空中捕捉到了微量的“负质量”。   据科学家猜测,宇宙中充斥着数以百万计的“虫洞”,但很少有直径超过10万公里的,而这个宽度正是太空飞船安全航行的最低要求。“负质量”的发现为利用“虫洞”创造了新的契机,可以使用它去扩大和稳定细小的“虫洞”。   科学家指出,如果把“负质量”传送到“虫洞”中,把“虫洞”打开,并强化它的结构,使其稳定,就可以使太空飞船通过。

编辑本段来源

虫洞的概念最初产生于对史瓦西解的研究中。物理学家在分析白洞解的时候,通过一个阿尔伯特?爱因斯坦的思想实验,发现宇宙时空自身可以不是平坦的。如果恒星形成了黑洞,那么时空在史瓦西半径,也就是视界的地方与原来的时空垂直。在不平坦的宇宙时空中,这种结构就意味着黑洞视界内的部分会与宇宙的另一个部分相结合,然后在那里产生一个洞。这个洞可以是黑洞,也可以是白洞。而这个弯曲的视界,就叫做史瓦西喉,它就是一种特定的虫洞。   自从在史瓦西解中发现了虫洞,物理学家们就开始对虫洞的性质发生了兴趣。   虫洞连接黑洞和白洞,在黑洞与白洞之间传送物质。在这里,虫洞成为一个阿尔伯特?爱因斯坦—罗森桥,物质在黑洞的奇点处被完全瓦解为基本粒子,然后通过这个虫洞(即阿尔伯特?爱因斯坦—罗森桥)被传送到白洞并且被辐射出去。   虫洞还可以在宇宙的正常时空中显现,成为一个突然出现的超时空管道。理论推出的虫洞还有许多特性,限于篇幅,这里不再赘述。   总之,目前我们对黑洞、白洞和虫洞的本质了解还很少,它们还是神秘的东西,很多问题仍需要进一步探讨。目前天文学家已经间接地找到了黑洞,但白洞、虫洞并未真正发现,还只是一个经常出现在科幻作品中的理论名词。   虫洞也是霍金构想的宇宙期存在的一种极细微的洞穴。美国科学 虫洞

家对此做了深入的研究。目前的宇宙中,“宇宙项”几乎为零。所谓的宇宙项也称为“真空的能量”,在没有物质的空间中,能量也同样存在其内部,这是由爱因斯坦所导入的。宇宙初期的膨胀宇宙,宇宙项是必须的,而且,在基本粒子论里,也认为真空中的能量是自然呈现的。那么,为何目前宇宙的宇宙项变为零呢?柯尔曼说明:在爆炸以前的初期宇宙中,虫洞连接着很多的宇宙,很巧妙地将宇宙项的大小调整为零。结果,由一个宇宙可能产生另一个宇宙,而且,宇宙中也有可能有无数个这种微细的洞穴,它们可通往一个宇宙的过去及未来,或其他的宇宙。   旋转的或带有电荷的黑洞内部连接一个相应的白洞,你可以跳进黑洞而从白洞中跳出来。这样的黑洞和白洞的组合叫做虫洞。   最后,即使虫洞存在并且是稳定的,穿过它们也是十分不愉快的。贯穿虫洞的辐射(来自附近的恒星,宇宙的微波背景等等)将蓝移到非常高的频率。当你试着穿越虫洞时,你将被这些X射线和伽玛射线烤焦。虫洞的出现,几乎可以说是和黑洞同时的。

编辑本段相关理论

虫洞有几种说法:   一是空间的隧道,就像一个球,你要沿球面走就远了但如果你走的是球里的一条直径就近了,虫洞就是直径   二是黑洞与白洞的联系。黑洞可以产生一个势阱,白洞则可以产生一个反势阱。宇宙是三维的,将势阱看作第四维,那么虫洞就是连接势阱和反势阱的第五维。假如画出宇宙、势阱、反势阱和虫洞的图像,它就像一个克莱因瓶——瓶口是黑洞,瓶身和瓶颈的交界处是白洞,瓶颈是虫洞。   三是你说的时间隧道,根据爱因斯坦所说的你可以进行时间旅行,但你只能看,就像看电影,却无法改变发生的事情,因为时间是线行的,事件就是一个个珠子已经穿好,你无法改变珠子也无法调动顺序   到现在为止,我们讨论的都是普通“完美”黑洞。细节上,我们讨论的黑洞都不旋转也没有电荷。如果我们考虑黑洞旋转同时/或者带有电荷,事情会变的更复杂。特别的是,你有可能跳进这样的黑洞而不撞到奇点。结果是,旋转的或带有电荷的黑洞内部连接一个相应的白洞,你可以跳进黑洞而从白洞中跳出来。这样的黑洞和白洞的组合叫做虫洞。   白洞有可能离黑洞十分远;实际上它甚至有可能在一个“不同的宇宙”--那就是,一个时空区域,除了虫洞本身,完全和我们在的区域没有连接。一个位置方便的虫洞会给我们一个方便和快捷的方法去旅行很长一段距离,甚至旅行到另一个宇宙。或许虫洞的出口停在过去,这样你可以通过它而逆着时间旅行。总的来说,它们听起来很酷。   但在你认定那个理论正确而打算去寻找它们之前,你因该知道两件事。首先,虫洞几乎不存在。正如我们上面我们说到白洞时,只因为它们是方程组有效的数学解并不表明它们在自然中存在。特别的,当黑洞由普通物质坍塌形成(包括我们认为存在的所有黑洞)并不会形成虫洞。如果你掉进其中的一个,你并不会从什么地方跳出来。你会撞到奇点,那是你唯一可去的地方。   还有,即使形成了一个虫洞,它也被认为是不稳定的。即使是很小的扰动(包括你尝试穿过它的扰动)都会导致它坍塌。   在史瓦西发现了史瓦西黑洞以后,理论物理学家们对爱因斯坦常方程的史瓦西解进行了几乎半个世纪的探索。包括上面说过的克尔解、雷斯勒——诺斯特朗姆解以及后来的纽曼解,都是围绕史瓦西的解研究出来的成果。我在这里将介绍给大家的虫洞,也是史瓦西的后代。   虫洞在史瓦西解中第一次出现,是当物理学家们想到了白洞的时候。他们通过一个爱因斯坦的思想实验,发现时空可以不是平坦的,而是弯曲的。在这种情况下,我们会十分的发现,如果恒星形成了黑洞,那么时空在史瓦西半径,也就是视界的地方是与原来的时空完全垂直的。在不是平坦的宇宙时空中,这种结构就以为着黑洞的视界内的部分会与宇宙的另一个部分相结合,然后在那里产生一个洞。这个洞可以是黑洞,也可以是白洞。而这个弯曲的视界,叫史瓦西喉,也就是一种特定的虫洞。   自从在史瓦西解中发现了虫洞,物理学家们就开始对虫洞的性质感到好奇。   我们先来看一个虫洞的经典作用:连接黑洞和白洞,成为一个爱因斯坦——罗森桥,将物质在黑洞的奇点处被完全瓦解为基本粒子,然后通过这个虫洞(即爱因斯坦——罗森桥)被传送到这个白洞的所在,并且被辐射出去。 虫洞示意图

黑洞和黑洞之间也可以通过虫洞连接,当然,这种连接无论是如何的将强,它还是仅仅是一个连通的“宇宙监狱”。   虫洞不仅可以作为一个连接洞的工具,它还在宇宙的正常时空中出现,成为一个突然出现在宇宙中的超空间管道。   虫洞没有视界,它有的仅仅是一个和外界的分解面。虫洞通过这个分解面和超空间连接,但是在这里时空曲率不是无限大。就好比在一个在平面中一条曲线和另一条曲线相切,在虫洞的问题中,它就好比是一个四维管道和一个三维的空间相切,在这里时空曲率不是无限大。因而我们现在可以安全地通过虫洞,而不被巨大的引力所摧毁。

编辑本段性质

利用相对论在不考虑一些量子效应和除引力以外的任何能量的时候,我们得到了一些十分简单、基本的关于虫洞的描述。这些描述十分重要,但是由于我们研究的重要是黑洞,而 虫洞是4度空间就在我们身边

不是宇宙中的洞,因此我在这里只简单介绍一下虫洞的性质,而对于一些相关的理论以及这些理论的描述,这里先不涉及。   虫洞有些什么性质呢?最主要的一个,是相对论中描述的,用来作为宇宙中的高速火车。但是,虫洞的第二个重要的性质,也就是量子理论告诉我们的东西又明确的告诉我们:虫洞不可能成为一个宇宙的高速火车。虫洞的存在,依赖于一种奇异的性质和物质,而这种奇异的性质,就是负能量。只有负能量才可以维持虫洞的存在,保持虫洞与外界时空的分解面持续打开。当然,狄拉克在芬克尔斯坦参照系的基础上,发现了参照系的选择可以帮助我们更容易或者难地来分析物理问题。同样的,负能量在狄拉克的另一个参照系中,是非常容易实现的,因为能量的表现形式和观测物体的速度有关。这个结论在膜规范理论中同样起到了十分重要的作用。根据参照系的不同,负能量是十分容易实现的。在物体以近光速接近虫洞的时候,在虫洞的周围的能量自然就成为了负的。因而以接近光速的速度可以进入虫洞,而速度离光速太大,那么物体是无论如何也不可能进入虫洞的。这个也就是虫洞的特殊性质之一。

编辑本段生产机制

自然产生机制

虫洞的自然产生机制有两种:   其一,是黑洞的强大引力能;   其二,是克尔黑洞的快速旋转,其伦斯——梯林效应将黑洞周围的能层中的时空撕开一些小口子。这些小口子在引力能和旋转能的作用下被击穿,成为一些十分小的虫洞。这些虫洞在黑洞引力能的作用下,可以确定它们的出口在那里,但是现在还不可能完全完成,因为量子理论和相对论还没有完全结合。

个人假设

I、虫洞像河流,通过的物体像船,船顺河而下;   虫洞体像一个圆柱形磁铁,强力的类磁力线在入口处将通过的物体分解,以波的形式在柱心管道运行,在出口处还原。通过的物体类似一个障碍,造成波的某一部分形变,然后这个形变推移到出口。   可能还涉及到横波、纵波,波的反射、折射、衍射,物质的不均匀、空间的不规则,如同水中气泡般的宇宙空洞。

编辑本段爱因斯坦

简介

爱因斯坦1900年毕业于苏黎世联邦理工学院,入瑞士国籍。1905年获苏黎世大学哲学博士学位。曾在伯尔尼专利局任职,在苏黎世工业大学、布拉格德意志担任大学教授。1913年返德国,任柏林威廉皇帝物理研究所所长和柏林洪堡大学教授,并当选为普鲁士科学院院士。1933年因受纳粹政权迫害,迁居美国,任普林斯顿高级研究所教授,从事理论物理研究,1940年入美国国籍。2009年10月4日,诺贝尔基金会评选“1921年物理学奖得主爱因斯坦”为诺贝尔奖百余年历史上最受尊崇的3位获奖者之一。(其他两位是1964年和平奖得主马丁路德金、1979年和平奖得主德兰修女。)

成长履历

1879年3月14日上午11时30分,爱因斯坦出生在德国乌尔姆市(Ulm, Kingdom of Württemberg, German Empire)班霍夫街135号。父母都是犹太人。父名赫尔曼·爱因斯坦,母亲玻琳。   1881年11月18日,爱因斯坦的妹妹玛雅在慕尼黑出生。   1884年,爱因斯坦对袖珍罗盘着迷。   1885年,爱因斯坦开始学小提琴。   1886年,爱因斯坦在慕尼黑公立学校(Council School)读书;在家里学习犹太教的教规。   1888年,爱因斯坦入路易波尔德高级中学学习。在学校继续受宗教教育,接受受戒仪式。弗里德曼是指导老师。   1889年,在医科大学生塔尔梅引导下,读通俗科学读物和哲学著作。   1891年,自学欧几里德几何学(Euclidean geometry),感到狂热的喜爱,同时开始自学高等数学。 1892年,开始读康德(Immanuel Kant)的著作。 1895年,自学完微积分(calculus)。   1896年,获阿劳中学毕业证书。10月,进苏黎世联邦工业大学师范系学习物理。爱因斯坦 1899年10月19日,爱因斯坦正式申请瑞士公民权。   1900年8月爱因斯坦毕业于苏黎世联邦工业大学;12月完成论文《由毛细管现象得到的推论》,次年发表在莱比锡《物理学杂志》上并入瑞士籍。   1901年3月21日,取得瑞士国籍。在这一年5-7月完成电势差的热力学理论的论文。 1904年9月,由专利局的试用人员转为正式三级技术员。   1905年3月,发表量子论,提出光量子假说,解决了光电效应问题。4月向苏黎世大学提出论文《分子大小的新测定法》,取得博士学位。5月完成论文《论动体的电动力学》,独立而完整地提出狭义相对性原理,开创物理学的新纪元。   1906年4月,晋升为专利局二级技术员。11月完成固体比热的论文,这是关于固体的量子论的第一篇论文。 1908年10月兼任伯尔尼大学编外讲师。   1909年10月,离开伯尔尼专利局,任苏黎世大学理论物理学副教授。爱因斯坦   1910年10月,完成关于临界乳光的论文。   1912年提出“光化当量”定律。   1913年他返德国,任柏林威廉皇帝物理研究所长和柏林洪堡大学教授,并当选为普鲁士科学院院士。 1914年4月,爱因斯坦接受德国科学界的邀请,迁居到柏林,   8月 即爆发了第一次世界大战。他虽身居战争的发源地,生活在战争鼓吹者的包围之中,却坚决地表明了自己的反战态度。   9月 爱因斯坦参与发起反战团体“新祖国同盟”,在这个组织被宣布为非法、成员大批遭受逮捕和迫害而转入地下的情况下,爱因斯坦仍坚决参加这个组织的秘密活动。   10月 德国的科学界和文化界在军国主义分子的操纵和煽动下,发表了“文明世界的宣言”,为德国发动的侵略战争辩护,鼓吹德国高于一切,全世界都应该接受“真正德国精神”。在“宣言”上签名的有九十三人,都是当时德国有声望的科学家、艺术家和牧师等。就连能斯脱、伦琴、奥斯特瓦尔德、普朗克等都在上面签了字。当征求爱因斯坦签名时,他断然拒绝了,而同时他却毅然在反战的《告欧洲人书》上签上自己的名字。这一举动震惊了全世界。   1915年11月,提出广义相对论引力方程的完整形式,并且成功地解释了水星近日点运动。爱因斯坦 1916年3月,完成总结性论文《广义相对论的基础》。5月提出宇宙空间有限无界的假说。8月完成《关于辐射的量子理论》,总结量子论的发展,提出受激辐射理论。   1917年,列宁领导的苏联社会主义革命胜利后,爱因斯坦热情地支持这个伟大的革命,赞扬这是一次对全世界将有决定性意义的、伟大的社会实验并表示:“我尊敬列宁,因为他是一位有完全自我牺牲精神,全心全意为实现社会正义而献身的人。我并不认为他的方法是切合实际的,但有一点可以肯定:像他这种类型的人,是人类良心的维护者和再造者。”   1921年,爱因斯坦因光电效应研究而获得诺贝尔物理学奖,他的研究推动了量子力学的发展。

重要贡献

狭义相对论   狭义相对论的创立:早在16岁时,爱因斯坦就从书本上了解到光是以很快速度前进的电磁波,他产生了一个想法,如果一个人以光的速度运动,他将看到一幅什么样的世界景象呢?他将看不到前进的光,只能看到在空间里振荡着却停滞不前的电磁场。这种事可能发生吗?   与此相联系,他非常想探讨与光波有关的所谓以太的问题。以太这个名词源于希腊,用以代表组成天上物体的基本元素。当时的看法是,波的传播要依赖于媒质,因为光可以在真空中传播,传播光波的媒质是充满整个空间的以太,也叫光以太。与此同时,电磁学得到了蓬勃发展,经过麦克斯韦、赫兹等人的努力,形成了成熟的电磁现象的动力学理论——电动力学,并从理论与实践上将光和电磁现象统一起来,认为光就是一定频率范围内的电磁波,从而将光的波动理论与电磁理论统一起来。以太不仅是光波的载体,也成了电磁场的载体。直到19世纪末,人们企图寻找以太,然而从未在实验中发现以太。   爱因斯坦喜欢阅读哲学著作,并从哲学中吸收思想营养,他相信世界的统一性和逻辑的一致性。相对性原理已经在力学中被广泛证明。但在电动力学中却无法成立,对于物理学这两个理论体系在逻辑上的不一致,爱因斯坦提出了怀疑。他认为,相对论原理应该普遍成立,因此电磁理论对于各个惯性系应该具有同样的形式,但在这里出现了光速的问题。光速是不变的量还是可变的量,成为相对性原理是否普遍成立的首要问题。当时的物理学家一般都相信以太,也就是相信存在着绝对参照系,这是受到牛顿的绝对空间概念的影响。19世纪末,马赫在所著的《发展中的力学》中,批判了牛顿的绝对时空观,这给爱因斯坦留下了深刻的印象。 1905年5月的一天,爱因斯坦与一个朋友贝索讨论这个已探索了十年的问题,贝索按照马赫主义的观点阐述了自己的看法,两人讨论了很久。突然,爱因斯坦领悟到了什么,回到家经过反复思考,终于想明白了问题。第二天,他又来到贝索家,说:谢谢你,我的问题解决了。原来爱因斯坦想清楚了一件事:时间没有绝对的定义,时间与光信号的速度有一种不可分割的联系。他找到了开锁的钥匙,经过五个星期的努力工作,爱因斯坦把狭义相对论呈现在人们面前。   相对论认为,光速在所有惯性参考系中不变,它是物体运动的最大速度。由于相对论效应,运动物体的长度会变短,运动物体的时间膨胀。但由于日常生活中所遇到的问题,运动速度都是很低的(与光速相比),看不出相对论效应。   爱因斯坦在时空观的彻底变革的基础上建立了相对论力学,指出质量随着速度的增加而增加,当速度接近光速时,质量趋于无穷大。他并且给出了著名的质能关系式:E=mc^2,质能关系式对后来发展的原子能事业起到了指导作用。   广义相对论的建立   1907年,爱因斯坦听从友人的建议,提交了那篇著名的论文申请联邦工业大学的编外讲师职位,但得到的答复是论文无法理解。在此期间,爱因斯坦在考虑将已经建立的相对论推广,对于他来说,有两个问题使他不安。第一个是引力问题,狭义相对论对于力学、热力学和电动力学的物理规律是正确的,但是它不能解释引力问题。牛顿的引力理论是超距的,两个物体之间的引力作用在瞬间传递,即以无穷大的速度传递,这与相对论依据的场的观点和极限的光速冲突。第二个是非惯性系问题,狭义相对论与以前的物理学规律一样,都只适用于惯性系。但事实上却很难找到真正的惯性系。从逻辑上说,一切自然规律不应该局限于惯性系,必须考虑非惯性系。狭义相对论很难解释所谓的双生子佯谬,该佯谬说的是,有一对孪生兄弟,哥在宇宙飞船上以接近光速的速度做宇宙航行,根据相对论效应,高速运动的时钟变慢,等哥哥回来,弟弟已经变得很老了,因为地球上已经经历了几十年。而按照相对性原理,飞船相对于地球高速运动,地球相对于飞船也高速运动,弟弟看哥哥变年轻了,哥哥看弟弟也应该年轻了。这个问题简直没法回答。实际上,狭义相对论只处理匀速直线运动,而哥哥要回来必须经过一个变速运动过程,这是相对论无法处理的。正在人们忙于理解相对狭义相对论时,爱因斯坦正在接受完成广义相对论。   1907年,爱因斯坦撰写了关于狭义相对论的长篇文章《关于相对性原理和由此得出的结论》,在这篇文章中爱因斯坦第一次提到了等效原理,此后,爱因斯坦关于等效原理的思想又不断发展。1915年11月,爱因斯坦先后向普鲁士科学院提交了四篇论文,提出了新的看法,证明了水星近日点的进动,并给出了正确的引力场方程。至此,广义相对论的基本问题都解决了,广义相对论诞生了。1916年,爱因斯坦完成了长篇论文《广义相对论的基础》,在这篇文章中,爱因斯坦首先将以前适用于惯性系的相对论称为狭义相对论,将只对于惯性系物理规律同样成立的原理称为狭义相对性原理,并进一步表述了广义相对性原理:物理学的定律必须对于无论哪种方式运动着的参照系都成立。   相对论的意义   狭义相对论和广义相对论建立以来,已经过去了很长时间,它经受住了实践和历史的考验,是人们普遍承认的真理。相对论对于现代物理学的发展和现代人类思想的发展都有巨大的影响。 相对论从逻辑思想上统一了经典物理学,使经典物理学成为一个完美的科学体系。狭义相对论在狭义相对性原理的基础上统一了牛顿力学和麦克斯韦电动力学两个体系,指出它们都服从狭义相对性原理,都是对洛伦兹变换协变的,牛顿力学只不过是物体在低速运动下很好的近似规律。广义相对论又在广义协变的基础上,通过等效原理,建立了局域惯性长与普遍参照系数之间的关系,得到了所有物理规律的广义协变形式,并建立了广义协变的引力理论,而牛顿引力理论只是它的一级近似。这就从根本上解决了以前物理学只限于惯性系数的问题,从逻辑上得到了合理的安排。相对论严格地考察了时间、空间、物质和运动这些物理学的基本概念,给出了科学而系统的时空观和物质观,从而使物理学在逻辑上成为完美的科学体系。   狭义相对论给出了物体在高速运动下的运动规律,并提示了质量与能量相当,给出了质能关系式。这两项成果对低速运动的宏观物体并不明显,但在研究微观粒子时却显示了极端的重要性。因为微观粒子的运动速度一般都比较快,有的接近甚至达到光速,所以粒子的物理学离不开相对论。质能关系式不仅为量子理论的建立和发展创造了必要的条件,而且为原子核物理学的发展和应用提供了根据。   对于爱因斯坦引入的这些全新的概念,当时地球上大部分物理学家,其中包括相对论变换关系的奠基人洛仑兹,都觉得难以接受。甚至有人说“当时全世界只有两个半人懂相对论”。旧的思想方法的障碍,使这一新的物理理论直到一代人之后才为广大物理学家所熟悉,就连瑞典皇家科学院,1922年把诺贝尔物理学奖授予爱因斯坦时,也只是说“由于他对理论物理学的贡献,更由于他发现了光电效应的定律。”对爱因斯坦的诺贝尔物理学奖颁奖辞中竟然对于爱因斯坦的相对论只字未提。   E=mc^2   物质不灭定律,说的是物质的质量不灭;能量守恒定律,说的是物质的能量守恒。(信息守恒定律) 虽然这两条伟大的定律相继被人们发现了,但是人们以为这是两个风马牛不相关的定律,各自说明了不同的自然规律。甚至有人以为,物质不灭定律是一条化学定律,能量守恒定律是一条物理定律,它们分属于不同的科学范畴。   爱因斯坦认为,物质的质量是惯性的量度,能量是运动的量度;能量与质量并不是彼此孤立的,而是互相联系的,不可分割的。物体质量的改变,会使能量发生相应的改变;而物体能量的改变,也会使质量发生相应的改变。   在狭义相对论中,爱因斯坦提出了著名的质能公式:E=mc^2 (这里的E代表物体的能量,m代表物体的质量,c代表光的速度,即3×10^8m/s)。   爱因斯坦的理论,最初受到许多人的反对,就连当时一些著名物理学家也对这位年青人的论文表示怀疑。然而,随着科学的发展,大量的科学实验证明爱因斯坦的理论是正确的,爱因斯坦才一跃而成为世界著名的科学家,成为20世纪世界最伟大的科学家。   爱因斯坦的质能关系公式,正确地解释了各种原子核反应:就拿氦4来说,它的原子核是由2个质子和2个中子组成的。照理,氦4原子核的质量就等于2个质子和2个中子质量之和。实际上,这样的算术并不成立,氦核的质量比2个质子、2个中子质量之和少了0.0302原子质量单位[57]!这是为什么呢?因为当2个氘[dao]核(每个氘核都含有1个质子、1个中子)聚合成1个氦4原子核时,释放出大量的原子能。生成1克氦4原子时,大约放出2.7×10^12焦耳的原子能。正因为这样,氦4原子核的质量减少了。   这个例子生动地说明:在2个氘原子核聚合成1个氦4原子核时,似乎质量并不守恒,也就是氦4原子核的质量并不等于2个氘核质量之和。然而,用质能关系公式计算,氦4原子核失去的质量,恰巧等于因反应时释放出原子能而减少的质量!   光电效应   光照射到某些物质上,引起物质的电性质发生变化。这类光致电变的现象被人们统称为光电效应(Photoelectric effect)。   光电效应分为光电子发射、光电导效应和光生伏特效应。前一种现象发生在物体表面,又称外光电效应。后两种现象发生在物体内部,称为内光电效应。   1905年,爱因斯坦提出光子假设,成功解释了光电效应,因此获得1921年诺贝尔物理奖。   上帝不掷骰子   爱因斯坦曾经是量子力学的催生者之一,但是他不满意量子力学的后续发展,爱因斯坦始终认为“量子力学(以玻恩为首的哥本哈根诠释:“基本上,量子系统的描述是机率的。一个事件的机率是波函数的绝对值平方。”)不完整”,但苦于没有好的解说样板,也就有了著名的“上帝不掷骰子”的否定式呐喊!其实,爱因斯坦的直觉是对的,决定论的量子诠释才是“量子论诠释”的本真、根源。爱因斯坦到过世前都没有接受量子力学是一个完备的理论。爱因斯坦还有另一个名言:“月亮是否只在你看着他的时候才存在?”   爱因斯坦在提出相对论的时候,曾将宇宙常数(为了解释物质密度不为零的静态宇宙的存在﹐他在引力场方程中引进一个与度规张量成比例的项﹐用符号Λ 表示。该比例常数很小﹐在银河系尺度范围可忽略不计。只在宇宙尺度下﹐Λ 才可能有意义﹐所以叫作宇宙常数。即所谓的反引力的固定数值)代入他的方程。他认为,有一种反引力,能与引力平衡,促使宇宙有限而静态。当哈勃得意洋洋的在天文望远镜展示给爱因斯坦看时,爱因斯坦惭愧极了,他说:“这是我一生所犯下的最大错误。”宇宙是膨胀着的!哈勃等认为,反引力是不存在的,由于星系间的引力,促使膨胀速度越来越慢。   那么,爱因 虫洞原理图

斯坦就完全错了吗?不。星系间有一种扭旋的力,促使宇宙不断膨胀,即暗能量。70亿年前,它们“战胜”了暗物质,成为宇宙的主宰。最新研究表明,按质量成份(只算实质量,不算虚物质)计算,暗物质和暗能量约占宇宙96%。看来,宇宙将不断加速膨胀,直至解体死亡。(目前也有其它说法,争议不休)。宇宙常数虽存在,但反引力的值远超过引力。也难怪这位倔强的物理学家与波尔在量子力学的争论:“上帝是不掷骰子的!”

编辑本段相关言论

星空 最后的前沿

探索星空是人类一个恒久的梦想。 在晴朗的夜晚, 每当我们仰起头来, 就会看到满天的繁星。 自古以来, 星空以它无与伦比的浩瀚、 深邃、 美丽及神秘激起着人类无数的遐想。 著名的美国科幻电视连续剧《星际旅行》 (Star Trek) 中有这样一句简短却意味无穷的题记: 星空, 最后的前沿 (Space, the final frontier)[注一]。 当我第一次观看这个电视连续剧的时候, 这句用一种带有磁性的话外音念出的题记给我留下了令人神往的印象。   在远古的时候, 人类探索星空的方式是肉眼, 后来开始用望远镜, 但人类迈向星空的第一步则是在一九五七年。 那一年, 人类发射的第一个航天器终于飞出了我们这个蓝色星球的大气层。 十二年后, 人类把足迹留在了月球上。 三年之后, 人类向外太阳系发射了先驱者十号深空探测器。 一九八三年, 先驱者十号飞离了海王星轨道, 成为人类发射的第一个飞离太阳系的航天器[注二]。   从人类发射第一个航天器以来, 短短二十几年的时间里, 齐奥尔科夫斯基所预言的 “人类首先将小心翼翼地穿过大气层, 然后再去征服太阳周围的整个空间” 就成为了现实, 人类探索星空的步履不可谓不迅速。 但是, 相对于无尽的星空而言, 这种步履依然太过缓慢。 率先飞出太阳系的先驱者十号如今正在一片冷寂的空间中滑行着, 在满天的繁星之中, 要经过多少年它才能飞临下一颗恒星呢? 答案是两百万年! 那时它将飞临距离我们六十八光年的金牛座 (Taurus)[注三]。 六十八光年的距离相对于地球上的任何尺度来说都是极其巨大的, 但是相对于远在三万光年之外的银河系中心, 远在两百二十万光年之外的仙女座大星云, 远在六千万光年之外的室女座星系团, 以及更为遥远的其它天体来说无疑是微不足道的。 人类的好奇心是没有边界的, 可是即便人类航天器的速度再快上许多倍, 甚至接近物理速度的上限 - 光速, 用星际空间的距离来衡量依然是极其缓慢的。   那么, 有没有什么办法可以让航天器以某种方式变相地突破速度上限, 从而能够在很短的时间内跨越那些近乎无限的遥远距离呢? 科幻小说家们率先展开了想象的翅膀。

旅行家的天堂

一九八五年, 美国康乃尔大学 (Cornell University) 的著名行星天文学家卡尔 ? 萨根 (Carl Sagan) 写了一部科幻小说, 叫做《接触》 (Contact)。 萨根对探索地球以外的智慧 虫洞可能实现人类穿越时空的梦想

生物有着浓厚的兴趣, 他客串科幻小说家的目的之一是要为寻找外星智慧生物的 SETI 计划筹集资金。 他的这部小说后来被拍成了电影, 为他赢得了广泛的知名度。   萨根在他的小说中叙述了一个动人的故事: 一位名叫艾丽 (Ellie) 的女科学家收到了一串来自外星球智慧生物的电波信号。 经过研究, 她发现这串信号包含了建造一台特殊设备的方法, 那台设备可以让人类与信号的发送者会面。 经过努力, 艾丽与同事成功地建造起了这台设备, 并通过这台设备跨越了遥远的星际空间与外星球智慧生物实现了第一次接触。   但是, 艾丽与同事按照外星球智慧生物提供的方法建造出的设备究竟利用了什么方式让旅行者跨越遥远的星际空间的呢? 这是萨根需要大胆 “幻想” 的地方。 他最初的设想是利用黑洞。 但是萨根毕竟不是普通的科幻小说家, 他的科学背景使他希望自己的科幻小说尽可能地不与已知的物理学定律相矛盾。 于是他给自己的老朋友, 加州理工大学 (California Institute of Technology) 的索恩 (Kip S. Thorne) 教授打了一个电话。 索恩是研究引力理论的专家, 萨根请他为自己的设想做一下技术评估。 索恩经过思考及粗略的计算, 很快告诉萨根黑洞是无法作为星际旅行的工具的, 他建议萨根使用虫洞 (wormhole) 这个概念。 据我所知, 这是虫洞这一名词第一次进入科幻小说中[注四]。 在那之后, 各种科幻小说、 电影、 及电视连续剧相继采用了这一名词, 虫洞逐渐成为了科幻故事中的标准术语。 这是科幻小说家与物理学家的一次小小交流结出的果实。   萨根与索恩的交流不仅为科幻小说带来了一个全新的术语, 也为物理学开创了一个新的研究领域。 在物理学中, 虫洞这一概念最早是由米斯纳 (C. W. Misner) 与惠勒 (J. A. Wheeler) 于一九五七年提出的, 与人类发射第一个航天器恰好是同一年。 那么究竟什么是虫洞? 它又为什么会被科幻小说家视为星际旅行的工具呢? 让我们用一个简单的例子来说明: 大家知道, 在一个苹果的表面上从一个点到另一个点需要走一条弧线, 但如果有一条蛀虫在这两个点之间蛀出了一个虫洞, 通过虫洞就可以在这两个点之间走直线, 这显然要比原先的弧线来得近。 把这个类比从二维的苹果表面推广到三维的物理空间, 就是物理学家们所说的虫洞, 而虫洞可以在两点之间形成快捷路径的特点正是科幻小说家们喜爱虫洞的原因[注五]。 只要存在合适的虫洞, 无论多么遥远的地方都有可能变得近在咫尺, 星际旅行家们将不再受制于空间距离的遥远。 在一些科幻故事中, 技术水平高度发达的文明世界利用虫洞进行星际旅行就像今天的我们利用高速公路在城镇间旅行一样。 在著名的美国科幻电影及电视连续剧《星际之门》 (Stargate,港台译 星际奇兵) 中人类利用外星文明留在地球上的一台被称为 “星际之门” 的设备可以与其它许多遥远星球上的 “星际之门” 建立虫洞连接, 从而能够几乎瞬时地把人和设备送到那些遥远的星球上。 虫洞成为了科幻故事中星际旅行家的天堂。   不过米斯纳与惠勒所提出的虫洞是极其微小的, 并且在极短的时间内就会消失, 无法成为星际旅行的通道。 萨根的小说发表之后, 索恩对虫洞产生了浓厚的兴趣, 并和他的学生莫里斯 (Mike Morris) 开始对虫洞作深入的研究。 与米斯纳和惠勒不同的是, 索恩感兴趣的是可以作为星际旅行通道的虫洞, 这种虫洞被称为可穿越虫洞 (traversable wormhole)。

负能量物质

那么什么样的虫洞能成为可穿越虫洞呢? 一个首要的条件就是它必须存在足够长的时间, 不能够没等星际旅行家穿越就先消失。 因此可穿越虫洞首先必须是足够稳定的。 一个虫洞怎样才可以稳定存在呢? 索恩和莫里斯经过研究发现了一个不太妙的结果, 那就是在虫洞中必须存在某种能量为负的奇特物质! 为什么会有这样的结论呢? 那是因为物质进入虫洞时是向内汇聚的, 而离开虫洞时则是向外飞散的, 这种由汇聚变成飞散的过程意味着在虫洞的深处存在着某种排斥作用。 由于普通物质的引力只能产生汇聚作用, 只有负能量物质才能够产生这种排斥作用。 因此, 要想让虫洞成为星际旅行的通道, 必须要有负能量的物质。 索恩和莫里斯的这一结果是人们对可穿越虫洞进行研究的起点。   索恩和莫里斯的结果为什么不太妙呢? 因为人们在宏观世界里从未观测到任何负能量的物质。 事实上, 在物理学中人们通常把真空的能量定为零。 所谓真空就是一无所有, 而负能量意味着比一无所有的真空具有 “更少” 的物质, 这在经典物理学中是近乎于自相矛盾的说法。   但是许多经典物理学做不到的事情在二十世纪初随着量子理论的发展却变成了可能。 负能量的存在很幸运地正是其中一个例子。 在量子理论中, 真空不再是一无所有, 它具有极为复杂的结构, 每时每刻都有大量的虚粒子对产生和湮灭。 一九四八年, 荷兰物理学家卡什米尔 (Hendrik Casimir) 研究了真空中两个平行导体板之间的这种虚粒子态, 结果发现它们比普通的真空具有更少的能量, 这表明在这两个平行导体板之间出现了负的能量密度! 在此基础上他发现在这样的一对平行导体板之间存在一种微弱的相互作用。 他的这一发现被称为卡什米尔效应。 将近半个世纪后的一九九七年, 物理学家们在实验上证实了这种微弱的相互作用, 从而间接地为负能量的存在提供了证据。 除了卡什米尔效应外, 二十世纪七八十年代以来, 物理学家在其它一些研究领域也先后发现了负能量的存在。   因此, 种种令人兴奋的研究都表明, 宇宙中看来的确是存在负能量物质的。 但不幸的是, 迄今所知的所有这些负能量物质都是由量子效应产生的, 因而数量极其微小。 以卡什米尔效应为例, 倘若平行板的间距为一米, 它所产生的负能量的密度相当于在每十亿亿立方米的体积内才有一个 (负质量的) 基本粒子! 而且间距越大负能量的密度就越小。 其它量子效应所产生的负能量密度也大致相仿。 因此在任何宏观尺度上由量子效应产生的负能量都是微乎其微的。   另一方面, 物理学家们对维持一个可穿越虫洞所需要的负能量物质的数量也做了估算, 结果发现虫洞的半径越大, 所需要的负能量物质就越多。 具体地说, 为了维持一个半径为一公里的虫洞所需要的负能量物质的数量相当于整个太阳系的质量。   如果说负能量物质的存在给利用虫洞进行星际旅行带来了一丝希望, 那么这些更具体的研究结果则给这种希望泼上了一盆无情的冷水。 因为一方面迄今所知的所有产生负能量物质的效应都是量子效应, 所产生的负能量物质即使用微观尺度来衡量也是极其微小的。 另一方面维持任何宏观意义上的虫洞所需的负能量物质却是一个天文数字! 这两者之间的巨大鸿沟无疑给建造虫洞的前景蒙上了浓重的阴影。

探险者的地狱

虽然数字看起来令人沮丧, 但是别忘了当我们讨论虫洞的时候, 我们是在讨论一个科幻的话题。 既然是讨论科幻的话题, 我们姑且把眼光放得乐观些。 即使我们自己没有能力建造虫洞, 或许宇宙间还存在其它文明生物有能力建造虫洞, 就象《星际之门》的故事那样。 甚至, 即使谁也没有能力建造虫洞, 或许在浩瀚宇宙的某个角落里存在着天然的虫洞。 因此让我们姑且假设在未来的某一天人类真的建造或者发现了一个半径为一公里的虫洞。   我们是否就可以利用它来进行星际旅行了呢?   初看起来半径一公里的虫洞似乎足以满足星际旅行的要求了, 因为这样的半径在几何尺度上已经足以让相当规模的星际飞船通过了。 看过科幻电影的人可能对星际飞船穿越虫洞的特技处理留有深刻的印象。 从屏幕上看, 飞船周围充斥着由来自遥远天际的星光和辐射组成的无限绚丽的视觉幻象, 看上去飞船穿越的似乎是时空中的一条狭小的通道。   但实际情况远比这种幻想来得复杂。 事实上为了能让飞船及乘员安全地穿越虫洞, 几何半径的大小并不是星际旅行家所面临的主要问题。 按照广义相对论, 物质在通过象虫洞这样空间结构高度弯曲的区域, 会遇到一个十分棘手的问题, 那就是张力。 这为由于引力场在空间各处的分布不均匀所造成的, 它的一种大家熟悉的表现形式就是海洋中的潮汐。 由于这种张力的作用, 当星际飞船接近虫洞的时候, 飞船上的乘员会渐渐感觉到自己的身体在沿虫洞的方向上有被拉伸的感觉, 而在与之垂直的方向上则有被挤压的感觉。 这种感觉便是由虫洞引力场的不均匀造成的。 一开始, 这种张力只是使人稍有不适而已, 但随着飞船与虫洞的接近, 这种张力会迅速增加, 距离每缩小到十分一, 这种张力就会增加约一千倍。 当飞船距离虫洞还有一千公里的时候, 这种张力已经超出了人体所能承受的极限, 如果飞船到这时还不赶紧折回的话, 所有的乘员都将在致命的张力作用下丧命。 再往前飞一段距离, 飞船本身将在可怕的张力作用下解体, 而最终, 疯狂增加的张力将把已经成为碎片的飞船及乘员撕成一长串亚原子粒子。 从虫洞另一端飞出的就是这一长串早已无法分辨来源的亚原子粒子!   这就是星际探险者试图穿越半径为一公里的虫洞将会遭遇的结局。 半径一公里的虫洞不是旅行家的天堂, 而是探险者的地狱。   因此一个虫洞要成为可穿越虫洞, 一个很明显的进一步要求就是: 飞船及乘员在通过虫洞时所受到的张力必须很小。 计算表明, 这个要求只有在虫洞的半径极其巨大的情况下才能得到满足[注六]。 那么究竟要多大的虫洞才可以作为星际旅行的通道呢? 计算表明, 半径小于一光年的虫洞对飞船及乘员产生的张力足以破坏物质的原子结构, 这是任何坚固的飞船都无法经受的, 更遑论脆弱的飞船乘员了。 因此, 一个虫洞要成为可穿越虫洞, 其半径必须远远大于一光年。

从科幻到现实

但另一方面, 一光年用日常的距离来衡量虽然是一个巨大的线度, 用星际的距离来衡量, 却也不算惊人。 我们所在的银河系的线度大约是它的十万倍, 假如在银河系与两百二十万光年外的仙女座大星云之间存在一个虫洞的话, 从线度上讲它只不过是一个非常细小的通道。 那么会不会在我们周围的星际空间中真的存在这样的通道, 只不过还未被我们发现呢? 答案是否定的。 因为半径为一光年的虫洞真正惊人的地方不在于它的线度, 而在于维持它所需的负能量物质的数量。 计算表明, 维持这样一个虫洞所需的负能量物质的数量相当于整个银河系中所有发光星体质量总和的一百倍! 这样的虫洞产生的引力效应将远比整个银河系的引力效应更为显著, 如果在我们附近的星际空间中存在这种虫洞的话, 周围几百万光年内的物质运动都将受到显著的影响, 我们早就从它的引力场中发现其踪迹了。   因此不仅在地球上不可能建造可穿越虫洞, 在我们附近的整个星际空间中都几乎不可能存在可穿越虫洞而未被发现。   这样看来, 我们只剩下一种可能性需要讨论了, 那就是在宇宙的其它遥远角落里是否有可能存在可穿越虫洞? 对于这个问题, 我们也许永远都无法确切地知道结果, 因为宇宙实在太大了。 但是维持可观测虫洞所需的数量近乎于天方夜谭的负能量物质几乎为我们提供了答案。 迄今为止, 人类从未在任何宏观尺度上发现过负能量物质, 所有产生负能量物质的实验方法利用的都是微弱的量子效应。 为了能够维持一个可穿越虫洞, 必须存在某种机制把量子效应所产生的微弱的负能量物质汇集起来, 达到足够的数量。 但是负能量物质可以被汇聚起来吗? 最近十几年来物理学家们在这方面做了一些理论研究, 结果表明由量子效应产生的负能量物质是不可能无限制地加以汇聚的。 负能量物质汇聚得越多, 它所能够存在的时间就会越短。 因此一个虫洞没有负能量物质是不稳定的, 负能量物质太多了也会不稳定! 那么到底什么样的虫洞才能够稳定的呢? 初步的计算表明, 只有线度比原子的线度还要小二十几个数量级的虫洞才是稳定的[注七]!   这一系列结果无疑是非常冷酷的, 如果这些结果成立的话, 存在可穿越虫洞的可能性就基本上被排除了, 所有那些美丽的科幻故事也就都成了镜花水月。 不过幸运 (或不幸) 的是, 上面所叙述的许多结果依据的是目前还比较前沿 - 因而相对来说也还比较不成熟 - 的物理理论。 未来的研究是否会从根本上动摇这些理论, 从而完全推翻我们上面介绍的许多结果, 还是一个未知数。 退一步讲, 即使那些物理理论基本成立, 上面所叙述的许多结果也只是从那些理论推出的近似结果或特例。 比方说, 许多结果假定了虫洞是球对称的, 而实际上虫洞完全可以是其它形状的, 不同形状的虫洞所要求的负能量物质的数量, 所产生张力的大小都是不同的。 所有这些都表明即使那些物理理论真的成立, 我们上面提到的结论也不见得是完全   打开它的方法就是共鸣利用物质间相互吸引原理使两时空虫洞正反两种物质能量互相吸引从而打开它,但这两种能量是光能量与暗能量

编辑本段关于时间

时间随宇宙的变化而变。时间是因变量。——时间的本质,Deng's时间公式   t=T(U,S,X,Y,Z......)   U-宇宙;S空间,XYZ,......事件,顺序   时间是宇宙事件秩序的计量。时间的本质    什么是时间?时间是宇宙事件顺序的度量。   时间不是自变量,而是因变量,它是随宇宙的变化而变化。   t=(S1,S2,S3,...,Sn)   Deng's时间公式:世界事件发生次序的序列。其中,S是事件,S1,S2,S3,...,Sn是事件1,2,3,.....,n发生的顺序,时间就是对这些事件发生顺序的排序,标志的计量。   时间”是一个计量“事件过程的长短、次序”的“类别名词”。   可以说没有了“事件”,也就没有了时间(您可以试着举出没有事件还有时间的例子)   时间是人类用以描述物质运动过程或事件发生过程的一个参数,确定时间,是靠不受外界影响的物质周期变化的规律。例如月球绕地球周期,地球绕太阳周期,地球自转周期,原子震荡周期等。   时间在数学、物理上用坐标轴表示。“时间”时会出现什么状况?怎样利用时间的本质来思考“衰老”的问题?下面开始细致的分析,内容包括:为什么有些“事件”可以“同时发生”,有些却不能?时间与我们有什么关系?

矮行星百科名片

矮行星或称“侏儒行星”,体积介于行星和小行星之间,围绕太阳运转,质量足以克服固体应力以达到流体静力平衡(近于圆球)形状,没有清空所在轨道上的其他天体,同时不是卫星。矮行星是一个新的分类。定义的标准尚不明确。

矮行星

在2006年8月24日在捷克首都布拉格举行的第26届国际天文学大会中确认了矮行星的称谓与定义,决议文对矮行星的描述如下:1、以轨道绕着太阳的天体;2、有足够的质量以自身的重力克服固体应力,使其达到流体静力学平衡的形状(几乎是球形的);3、未能清除在近似轨道上的其它小天体;4、不是行星的卫星,或是其它非恒星的天体。在行星的基本定义上,科学家们大致上认同这样的说法:直接围绕恒星运行的天体,由于自身重力作用具有球状外形,但是也不能大到足够让其内部发生核子融合。   矮行星是太阳系外围较小的天体,或称为小行星。在行星的基本定义上,科学家们大致上认同这样的说法:直接围绕恒星运行的天体,由于自身重力作用具有球状外形,但是也不能大到足够让其内部发生核子融合。   但是实际上,最终的定义会比这复杂得多,有的天文学家倾向于把太阳系外围较小的天体称作“矮行星”,而另外一些人则愿意把它们叫做“小行星”,或者“柯伊伯带行星”,还有一些人则根本不想用到行星这个词。   相信矮行星的数目会很多,随着观测的不断进步,会越来越多。在布拉格举行的国际天文学协会第26次会议上,国际天文学协会术语委员会已正式决定以后不再称冥王星为“行星”,而是称其为“矮行星”。

编辑本段家族成员

冥王星

矮行星

冥王星曾被认为是离太阳最远的一颗大行星,它绕太阳运行一周历时248年之久,平均速度每秒只有 3.0英里.它距离太阳大约40天文单位,其表面温度大概是-348摄氏度。关于冥王星的直径大小问题尚未定论,尽管已经估计其最大值为3600英里(有人也测定它并不比月亮大,即在2170英里以下).这一估计的依据是冥王星的细小视圆面在天空中运行时对恒星的掩食情况。大小是地球的6分之一与5分之一之间,质量只有地球的2000分之一。

卡戎星

卡戎星是1978年华盛顿美国海军天文台的天文学家詹姆士'克裏斯蒂发现的。直到现在,它仍被看成冥王星的一颗卫星。在冥王星赤道上空约1.9万公里的圆形轨道上运转,其运行周期与冥王星自转周期相等。近年来的观测表明,“卡戎”其实与冥王星构成了双行星系统,同步围绕太阳旋转。另外,“卡戎”的直径超过1000公里,质量约为190亿亿吨,大约是冥王星的一半,其密度与冥王星相似。有专家推测,远古时冥王星与一颗庞大天体发生了碰撞,导致一大块碎片从中分离出来,最后形成了“卡戎”。

齐娜星

矮行星

相对于200多年前发现的谷神星和近30年前发现的卡戎,齐娜是一个完全陌生的新来者,她是在2003年被发现的。齐娜的公转轨道是个很扁的椭圆,它公转一周需要560年,离太阳最近的距离是38个天文单位,最远时为97个天文单位。天文学家目前认为,齐娜的直径约2300公里至2500公里,只比冥王星略大。科学家说,齐娜的大气可能由甲烷和氮组成,现在它离太阳太远,大气都结成了冰;当它运动到近日点时,表面温度将有所升高,甲烷和氮会重新变成气态。至于其内部结构,现在还只能猜测,有可能是冰和岩石的混合物,与冥王星类似。齐娜有一颗卫星,科学家暂时称之为加布里埃尔,他是好战公主齐娜的随从。这些非正式的名字最终都将被正式名称取代。

谷神星

谷神星(1 Ceres)是人们最早发现的第一颗小行星,由意大利人皮亚齐于1801年1月1日发现。其平均直径为952公里,是小行星带中最大最重的天体。谷神星4.6个地球年才绕太阳公转一周。

编辑本段基本特征

矮行星

矮行星它们的特点是外幔和表面由冰冻的水和气体元素组成的一些低熔点的化合物组成,有的其中混杂着的一些由重元素化合物组成的岩石质的矿物质,厚度占星体半径的比例相对较大,但所占星体相对质量却不大,内部可能有一个岩石质占主要物质组成部分的核心,占星体质量的绝大部分,星体体积和总质量不大,平均密度较小,一些大行星的卫星也具有这种类似冰矮星的结构。   像木卫二、三、四,土卫一、六等,对于行星级的冰矮星来讲,最大的是齐娜,直径大约2400公里,最小的卡绒,直径约800公里左右。像谷神星这样的距太阳较近的行星,表面的冰物质主要是水,而冥王星和卡绒的表面冰物质主要是水和熔点更低的甲烷、氮、一氧化碳等物质。过去曾将这些矮行星算作小行星中的一类,直到2006年才将它们从一般小行星中分离出来,划作单独的一类,称为矮行星,并把冥王星和冥卫一归入其中。   矮行星的这种星体结构和它产生的地处太阳系外围的低温环境和自身的质量有关,一方面,太阳的温度不足以将它们的由气体元素组成的低熔点物质驱散,另一方面,它们自身原始质量较小,星体本身不能将氢氦等较轻的轻元素气体束缚住。   但星体收缩产生的热量也不能将较重一些的气体元素组成的化合物如水和碳氢化合物等完全驱散,而会保留下一部分,同时它的足够的引力又使它足可以形成分层的物质结构,使较轻的物质浮于较重的由重元素组成的岩石质物质的表面,并随着星体以后的冷却,在表面上凝固下来,因此,会形成具有这种物质结构的星体。

编辑本段界定标准

矮行星

名称 分类 直径 质量   2005 FY9(Easterbunny) 类QB1天体 1600–2000公里(?) 不详   Orcus 类冥天体 840-1880公里 6.2-7.0×1020千克   塞德娜 黄道离散天体 1180–1800公里 1.7-6.1 × 1021千克   2003 EL61(Santa) 类QB1天体 约1500公里 ~4.2 × 1021千克   夸欧尔 类QB1天体 989-1346公里(?) 1.0-2.6 × 1021千克   2002 TC302 黄道离散天体 ≤1200公里 不详   伐楼拿 类QB1天体 ~936公里 ~5.9×1020千克   2002 UX25 类QB1天体 ~910公里 ~7.9×1020千克   2002 TX300 类QB1天体 <900公里 不详   伊克西翁 类冥天体 <822公里 不详   在过去,查龙(冥卫一)一直被视为冥王星的卫星,因为到现在都还没有明确的规范来区分“双星”(这里指的是两颗行星、矮行星或小行星)与附属卫星。在第26届国际天文联会会员大会原来的决议草案(5)中,查龙可能成为矮行星,原因是:   查龙的大小与形状满足成为行星的条件。(在最后决议中,皆成为矮行星的必要条件)   查龙与冥王星的质量比,使得两者的质心位置落在两者之间的空间中,而非在冥王星表面内的一点。   然而,这个定义在最后决议文本中并未被保留,在未来也不知是否会被加入。若相似的定义被采纳,查龙将成为矮行星的一员。   第二、第三和第四大的小行星(4号灶神星、2号智神星与10号健神星)也都可能成为矮行星,只要它们能达到流体静力平衡的形状(椭球体)。但目前还没有足够佐证资料。

大小与质量

矮行星质量和大小的上下限,在国际天文联会会员大会的5A决议案中并没有规范,没有严谨的上限,即使一个比水星还大的天体,若未能将邻近轨道的小天体清除掉,也许仍然会被归类为矮行星。下限则是以能否达到流体静力平衡的形状概念来规范,但是对这类物体的大小和形状尚未定义完成。在国际天文联会的5号决议案原先建议的是质量大于5×1020公斤,直径超过800公里,但是在最后决议的5A案中未予以保留,因此以观测经验为依据提供的建议是要根据对象的历史变化和构成来作认定。根据部分天文学家的说法,新定义可能会使矮行星的数量增至超过45颗。

用行星指数界定矮行星

把行星指数28.18348

编辑本段命名时间

2006年国际天文联合会对太阳系的成员做了定义,将“矮行星”定为新的天体分类,当时列有3颗,分别为谷神星神星、冥王星及Eris(2003 UB313)。2008年分别又增列了Makemake(2005 FY9)及Haumea(2003 EL61),目前计有5颗矮行星(2008/12/11)。   谷神星神星是西元1801年义大利的天文学家Piazzi所发现的,过去一直都被列为小行星,且为小行星群中体积最大的1颗,本体直径为960 × 932公里,绕日公转周期为4.60年,2006年的新行星定义之后改列为矮行星。   冥王星是西元1930年美国罗威尔天文台的天文学家C.W.Tombaugh所发现的,在过去一直被视为9大行星之一。它在行星中是最小的1颗,比我们月球还小,另其公转轨道面相对于黄道的倾斜角17.1度远比其他行星大,再加上公转椭圆轨道偏心率为0.249,使得其近日点在海王星的轨道之内,因此数年以来冥王星算不算是行星的问题不断被提出来讨论,2006年的新行星定义之后将其改列为矮行星。   Eris(2003 UB313)于2003年由美国Palomar天文台的天文学家Mike Brown等所发现的,本体直径约为2400公里比冥王星还大一些,因此发现后使得大家重新评估行星的定位问题。2006年的新行星定义之后将其列为矮行星之一,是目前体积最大的矮行星。

蓝巨星百科名片

蓝巨星是高质量的主序星,其内部的核反应速率很大,是体积过大的恒星。它们的持续阶段是比较短,只有数千万年的光景,但原因并不完全一样。蓝巨星是高质量的主序星,其内部的核反应速率很大,很快就离开了主序。

在天文学里,有“红巨星”和“蓝巨星”,前者呈暗红色,温度较低,通常属于老年恒星;而后者的温度极高,是年轻恒星的典范。

编辑本段蓝巨星与红巨星

当一颗恒星度过它漫长的青壮年期——主序星阶段,步入老年期时,它将首先变为一颗红巨星。称它为“巨星”,是突出它的体积巨大。在巨星阶段,恒星的体积将膨胀到原先的十亿倍。称它为“红”巨星,是因为在这恒星迅速膨胀的同时,它的外表面离中心越来越远,所以温度将随之而降低,发出的光也就越来越偏红。不过,虽然温度降低了一些,可红巨星的体积是如此之大,它的光度也变得很大,极为明亮。肉眼看到的最亮的星中,许多都是红巨星。红巨星一旦形成,就朝恒星的下一阶段——白矮星进发。当外部区域迅速膨胀时,氦核受反作用力却强烈向内收缩,被压缩的物质不断变热,最终内核温度将超过一亿度,点燃氦聚变。最后的结局将在中心形成一颗白矮星。   蓝巨星也是有的,但数量远少于红巨星。和红巨星一样,蓝巨星也都是体积过大的恒星,它们的持续阶段是比较短,只有数千万年的光景,但原因并不完全一样,蓝巨星是高质量的主序星,其内部的核反应速率很大, 很快就离开了主序。而红巨星是恒星主序后的氦和更重原子核燃烧的阶段, 产能速率很大, 而能源则不足(氦和更重原子核聚变产能的潜力已经很小了),所以持续时间不长.物体的热辐射和温度有着一定的函数关系。

编辑本段蓝巨星与疏散星团

疏散星团

在银河系中,疏散星团一般由年轻的蓝巨星组成,并且靠近银道面,因而属于星族I。球状星团有红巨星和天琴座RR型星组成,这些恒星按演化来说要年老得多。此外,球状星团既远离银道面,又靠近银心,所以它被列为星族II。与疏散星团不同,球状星团的特征是极端稳定,它们不仅密集,星数众多,远远超过疏散星团而且年龄也大的多——大约在50亿年以上。由观测得知,球状星团拥有大量红巨星和天琴座RR星。有一个球状星团甚至还包含着行星状星云。上述各类天体的年龄均比疏散星团中的蓝星高的多。这两类星团的相对年龄可由两者典型的颜色—光度图之间的差别清楚地反映出来。

编辑本段特殊的蓝巨星

特殊的蓝巨星—沃尔夫-拉叶星 蓝巨星-沃尔夫-拉叶星

沃尔夫-拉叶星   Wolf-Rayetstar   光谱中有许多很宽的发射线叠加在与O.B型星相似的连续谱上,这类星最初由法国天文学家C.J.E.沃尔夫和G.A.P.拉叶发现,因而得名,简称WR星或W星。在银河系和几个邻近星系中已发现了约250颗。WR分成两个次型:氮序和碳序,分别记为WN和WC。与普通O型和B型星大气中元素丰度相比,WR星大气中氢的含量少50~150倍,WN型星氮的含量超出50~100倍,而WC型星碳的含量超出400~700倍。在赫罗图上WR星位于主序之上。根据谱线轮廓的分析,WR星有很强的星风,估计质量损失率为10-5~10-4太阳质量年。这样大的质量损失率不可能维持很久,说明WR星年龄不大,但由于大质量星演化很快,氢已燃烧完,处于主序后阶段。

银河系科技名词定义

中文名称:银河系 英文名称:Galaxy;Galactic System 定义:地球和太阳所在的星系。 所属学科: 天文学(一级学科) ;恒星和银河系(二级学科) 本内容由全国科学技术名词审定委员会审定公布

百科名片

银河系的一侧:银河银河系(Milky Way)是太阳系所处的星系。是一个由2,000多亿颗恒星、数千个星团和星云组成的盘状恒星系统,它的直径约为100,000多光年,中心的厚度约为6,000多光年,因其主体部分投影在天球上的亮带被我国称为银河而得名。

银河系 Milky Way galaxy 或 The Milky Way system[1]。   银河系侧看像一个中心略鼓的大圆盘,整个圆盘的直径约为10万光年,太阳位于距银河中心2.6万光年处。鼓起处为银心是恒星密集区,故望去白茫茫的一片。银河系俯视像一个巨大的漩涡,这个漩涡有四个旋臂组成。太阳系 太阳

位于其中一个旋臂(猎户座臂),逆时针旋转(太阳绕银心旋转一周约需要2.5亿年)。   银河系呈旋涡状,有4条螺旋状的旋臂从银河系中心均匀对称地延伸出来。银河系中心和4条旋臂都是恒星密集的地方。(比较大的旋臂有4条,但最近研究表明主要的旋臂只有两条,另两条都未发育完全)有9460800000亿公里。中间最厚的部分约12000光年。太阳位于一条叫做猎户臂的旋臂上,距离银河系中心约2.6万光年。 银河系的发现经历了漫长的过程。望远镜发明后,伽利略首先用望远镜观测银河,发现银河由恒星组成。而后,T.赖特、I.康德、J.H.朗伯等认为,银河和全部恒星可能集合成一个巨大的恒星系统。18世纪后期,F.W.赫歇尔用自制的反射望远镜开始恒星计数的观测,以确定恒星系统的结构和大小,他断言恒星系统呈扁盘状,太阳离盘中心不远。他去世后,其子J.F.赫歇尔继承父业,继续进行深入研究,把恒星计数的工作扩展到南天。20世纪初,天文学家把以银河为表观现象的恒星系统称为银河系。J.C.卡普坦应用 银河系

统计视差的方法测定恒星的平均距离,结合恒星计数,得出了一个银河系模型。在这个模型里,太阳居中,银河系呈圆盘状,直径8千秒差距,厚2千秒差距。H.沙普利应用造父变星的周光关系,测定球状星团的距离,从球状星团的分布来研究银河系的结构和大小。他提出的模型是:银河系是一个透镜状的恒星系统,太阳不在中心。沙普利得出,银河系直径80千秒差距,太阳离银心20千秒差距。这些数值太大,因为沙普利在计算距离时未计入星际消光。20世纪20年代,银河系自转被发现以后,沙普利的银河系模型得到公认。 银河系是一个巨型棒旋星系(漩涡星系的一种),Sb型,共有4条旋臂。包含一、二千亿颗恒星。银河系整体作较差自转,太阳处自转速度约220千米/秒,太阳绕银心运转一周约2.5亿年。银河系的目视绝对星等为-20.5等,银河系的总质量大约是我们太阳质量的1万亿倍,大致10倍于银河系全部恒星质量的总和。这是我们银河系中存在范围远远超出明亮恒星盘的暗物质的强有力证据。关于银河系的年龄,目前占主流的观点认为,银河系在宇宙诞生的大爆炸之后不久就诞生了, 银河系

用这种方法计算出,我们银河系的年龄大概 在145亿岁左右,上下误差各有20多亿年。而科学界认为宇宙诞生的“大爆炸”大约发生137亿年前。

编辑本段银河系年龄

依据欧洲南天天文台(ESO)的研究报告,估计银河系的年龄约为136亿岁(1010年),差不多与宇宙一样老。   由天文学家Luca Pasquini, Piercarlo Bonifacio, Sofia Randich, Daniele Galli, and Raffaele G. Gratton.所组成的团队在2004年使用甚大望远镜(VLT)的紫外线视觉矩阵光谱仪进行的研 银河系

究,首度在球状星团NGC 6397的两颗恒星内发现了 铍元素。这个发现让他们将第一代恒星与第二代恒星交替的时间往前推进了2至3亿年,因而估计球状星团的年龄在134±8亿岁,因此银河系的年龄不会低于136±8亿岁。

编辑本段特征

简介

银河系是太阳系所在的恒星系统,包括一千二百亿颗恒星和大量的星团、星云,还有各种类型的星际气体和星际尘埃。它的总质量是太阳质量的1400亿倍。在银河系里大多数的恒星集中在一个扁球状的空间范围内,扁球的形状好像铁饼。扁球体中间突出的部分叫“核球”,半径约为7千光年。核球的中部叫“银核”,四周叫“银盘”。在银盘外面有一个更大的球形,那里星少,密度小,称为“银晕”,直径为7万光年。银河系是一个旋涡星系,具有旋涡结构,即有一个银心和两个旋臂,旋臂相距4500光年。其各部分的旋转速度和周期,因距银心的远近而不同。太阳距银心约2.3万光年,以220~250千米/秒的速度绕银心运转,运转的周期约为2.4亿年。   银河系物质约90%集中在恒星内 。恒星的种类繁多。按照恒星的物理性质、化学组成、空间分布和运动特征,恒星可以分为5个星族。最年轻的极端星族Ⅰ恒星主要分布在银盘里的旋臂 银河系

上;最年老的极端星族Ⅱ恒星则主要分布在银晕里。恒星常聚集成团。除了大量的双星外,银河系里已发现了1000多个星团。银河系里还有气体和尘埃,其含量约占银河系总质量的10%,气体和尘埃的分布不均匀,有的聚集为星云,有的则散布在星际空间。20世纪60年代以来,发现了大量的星际分子,如一氧化碳、水等 。分子云是恒星形成的主要场所。银河系核心部分,即银心或银核,是一个很特别的地方。它发出很强的射电、红外,X射线和γ射线辐射。其性质尚不清楚,那里可能有一个巨型黑洞,据估计其质量可能达到太阳质量的250万倍。对于银河系的起源和演化,知之尚少。   1971年英国天文学家林登·贝尔和马丁·内斯分析了银河系中心区的红外观测和其他性质,指出银河系中心的能源应是一个黑洞,并预言如果他们的假说正确,在银河系中心应可观测到一个尺度很小的发出射电辐射的源,并且这种辐射的性质应与人们在地面同步加速器中观测到的辐射性质一样。三年以后,这样的一个源果然被发现了,这就是人马A。   人马A有极小的尺度,只相当于普通恒星的大小,发出的射电辐射强度为2*10(34次方)尔格/秒,它位于银河系动力学中心的0.2光年之内。它的周围有速度高达300公里/秒的运动电离气体,也有很强的红外辐射源。已知所有的恒星级天体的活动都无法解释人马A的奇异特性。因此,人马A似乎是大质量黑洞的最佳候选者。但是由于目前对大质量的黑洞还没有结论性的证据,所以天文学家们谨慎地避免用结论性的语言提到大质量的黑洞。我们的银河系大约包含两千亿颗星体,其中恒星大约一千多亿颗,太阳就是其中典型的一颗。银河系是一个相当大的螺旋状星系,它有三个主要组成部分:包含旋臂的银盘,中央突起的银心和晕轮部分。   螺旋星系M83,它的大小和形状都很类似于我们的银河系。银盘外面是由稀疏的恒星和星际物质组成的球状体,称为银晕,直径约10万光年。   银河系有4条旋臂,分别是人马臂,猎户臂,英仙臂,天鹅臂。太阳位于猎户臂内侧。旋臂主要由星际物质构成。银河系也有自转。太阳系以每秒250千米速度围绕银河中心旋转,旋转一周约2.2亿年。银河系有两个伴星系:大麦哲伦星系和小麦哲伦星系。与银河系相对的称之为河外星系。   一般认为,银河系中的恒星多为双星或聚星。而2006年新的发现认为,银河系的主序星中2/3都是单星。

结构

观测到的银河旋臂结构

银河系的总体结构是:银河系物质的主要部分组成一个薄薄的圆盘,叫做银盘,银盘中心隆起的近似于球形的部分叫核球。在核球区域恒星高度密集,其中心有一个很小的致密区,称银核。银盘外面是一个范围更大、近于球状分布的系统,其中物质密度比银盘中低得多,叫作银晕。银晕外面还有银冕,它的物质分布大致也呈球形。   观测到的银河旋臂结构2005年,银河系被发现以哈柏分类来区分应该是一个巨大的棒旋星系SBc(旋臂宽松的棒旋星系),总质量大约是太阳质量的6,000亿至30,000亿倍。有大约1,000亿颗恒星。   从80年代开始,天文学家才怀疑银河是一个棒旋星系而不是一个普通的螺旋星系。2005年,斯必泽空间望远镜证实了这项怀疑,还确认了在银河的核心的棒状结构与预期的还大。   银河的盘面估计直径为98,000光年,太阳至银河中心的距离大约是28,000光年,盘面在中心向外凸起。   银河的中心有巨大的质量和紧密的结构,因此强烈怀疑它有超重质量黑洞,因为已经有许多星系被相信有超重质量黑洞在核心。   就像许多典型的星系一样,环绕银河系中心的天体,在轨道上的速度并不由与中心的距离和银河质量的分布来决定。在离开了核心凸起或是在外围,恒星的典型速度是每秒钟210~240公里之间。因此这星恒星绕行银河的周期只与轨道的长度有关,这与太阳系不同,在太阳系,距离不同就有不同的轨道速度对应著。   银河的棒状结构长约27,000光年,以44±10度的角度横亘在太阳与银河中心之间,他主要由红色的恒星组成,相信都是年老的恒星。   被观察到与推论的银河旋臂结构每一条旋臂都给予一个数字对应(像所有旋涡星系的旋臂),大约可以分出100段。相信有四条主要的旋臂起源自银河的核心,它们的名称如下: 被观察到与推论的银河旋臂结构

2 and 8 - 3kpc 和 英仙臂   3 and 7 - 距尺臂 和 天鹅臂 (与最近发现的延伸在一起 - 6)   4 and 10 - 南十字座 和 盾牌臂   5 and 9 - 船底座 和 人马臂   至少还有两个小旋臂或分支,包括:   11 - 猎户臂 (包含太阳和太阳系在内 - 12)   谷德带(本星团)是从猎户臂一端伸展出去的一条亮星集中的带,主要成员是B2~B5型星 。也有一些O型星 ,弥漫星云和几个星协,最靠近的OB星协是天蝎-半人马星协,距离太阳大约400光年。   在主要的旋臂外侧是外环或称为麒麟座环,这是天文学家布赖恩·颜尼 (Brian Yanny)和韩第·周·纽柏格(Heidi Jo Newberg)提出,是环绕在银河系外由恒星组成的环,其中包括在数十亿年前与其他星系作用诞生的恒星和气体。   银河的盘面被一个球状的银晕包围著,估计直径在250,000至400,000光年。.由于盘面上的气体和尘埃会吸收部份波长的电磁波,所以银晕的组成结构还不清楚。盘面(特别是旋臂)是恒星诞生的活耀区域,但是银晕中没有这些活动,疏散星团也主要出现在盘面上。   银河中大部分的质量是暗物质,形成的暗银晕估计有6,000亿至3兆个太阳质量,以银核为中心被聚集著。   新的发现使我们对银河结构与维度的认识有所增加,比早先经由仙女座星系(M31)的盘面所获得的更多。最近新发现的证据,证实外环是由天鹅臂延伸出去的,明确的支持银河盘面向外延伸的可能性。人马座矮椭球星系的发现,与在环绕著银极的轨道上的星系碎片,说明了他因为与银河的交互作用而被扯碎。同样的,大犬座矮星系也因为与银河的交互作用,使得残骸在盘面上环绕著银河。   在2006年1月9日, Mario Juric和普林斯顿大学的一些人宣布,史隆数位巡天在北半球的天空中发现一片巨大的云气结构(横跨约5,000个满月大小的区域)位在银河之内,但似乎不合于目前所有的银河模型。他将一些恒星汇聚在垂直于旋臂所在盘面的垂在线,可能的解释是小的矮星系与银河合并的结果。这个结构位于室女座的方向上,距离约30,000光年,暂时被称为室女恒星喷流。   在2006年5月9日, Daniel Zucker 和 Vasily Belokurov宣布史隆数位巡天在猎犬座和牧夫座又发现了两个矮星系。

银盘

银盘(Galactic disk):银河系中,由恒星、尘埃和气体组成的扁平盘.   银河系的物质密集部分组成一个圆盘,称为银盘。银盘中心隆起的球状部分称核球。核球中心有一个很小的致密区,称银核。银盘外面范围更大、近于球状分布的系统,称为银晕,其中的物质密度比银盘的低得多。银晕外面还有物质密度更低的部分,称银冕,也大致呈球形。银盘直径约25千秒差距,厚1~2秒差距,自中心向边缘逐渐变薄,太阳位于银盘内,离银心约8.5千秒差距,在银道面以北约8秒差距处 。银盘内有旋臂,这是气体、尘埃和年轻恒星集中的地方。银盘主要由星族Ⅰ天体组成,如G~K型主序星、巨星、新星 、行星状星云、天琴RR变星、长周期变星、半规则变星等。核球是银河系中心恒星密集的区域 ,近似于球形 ,直径约4千秒差距,结构复杂。核球主要由星族Ⅱ天体组成,也有少量星族Ⅰ天体 。核球的中心部分是 银 核 。它发出很强的射电、红外、X射线和γ射线 。其性质尚不清楚 ,可能包含一个黑洞。银晕主要由晕星族天体,如亚矮星、贫金属星、球状星团等组成,没有年轻的O、B型星,有少量气体。银晕中物质密度远低于银盘。银晕长轴直径约30千秒差距 ,年龄约1010年,质量还不十分清楚。在银晕的恒星分布区以外的银冕是一个大致呈球形的射电辐射区,其性质了解得甚少。   1785 年, F.W.赫歇尔第一个研究了银河系结构 。他用恒星计数方法得出银河系恒星分布为扁盘状、太阳位于盘面中心的结论。1918年,H.沙普利研究球状星团的空间分布 ,建立了银河系透镜形模型,太阳不在中心。到了20世纪20年代,沙普利模型得到公认。但由于未计入星际消光,沙普利模型的数值不准确 。研究银 河系结构传统上是用光学方法,但光学方法有一定的局限性。近几十年来发展起来的射电方法和红外技术成为研究银河系结构的强有力的工具。在沙普利模型的基础上,对银河系的结构已有了较深刻的了解。   银盘是银河系的主要组成部分,在银河系中可探测到的物质中,有九成都在银盘范围以内。银盘外形如薄透镜,以轴对称形式分布于银心周围,其中心厚度约1万光年,不过这是微微凸起的核球的厚度,银盘本身的厚度只有2000光年,直径近10万光年,可见总体上说银盘非常薄。   除了1000秒差距范围内的银核绕银心作刚体转动外,银盘的其他部分都绕银心作较差转动,即离银心越远转得越慢。银盘中的物质主要以恒星形式存在,占银河系总质量不到10%的星际物质,绝大部分也散布在银盘内。星际物质中,除含有电离氢、分子氢及多种星际分子外,还有10%的星际尘埃,这些直径在1微米左右的固态微粒是造成星际消光的主要原因,它们大都集中在银道面附近。   由于太阳位于银盘内,所以我们不容易认识银盘的起初面貌。为了探明银盘的结构,根据本世纪40年代巴德和梅奥尔对旋涡星系M31(仙女座大星云)旋臂的研究得出旋臂天体的主要类型,进而在银河系内普查这几类天体,发现了太阳附近的三段平行臂。由于星际消光作用,光学观测无法得出银盘的总体面貌。有证据表明,旋臂是星际气体集结的场所,因而对星际气体的探测就能显示出旋臂结构,而星际气体的21厘米射电谱线不受星际尘埃阻挡,几乎可达整个银河系。光学与射电观测结果都表明,银盘确实具有旋涡结构。

银心

星系的中心凸出部分,是一个很亮的球状,直径约为两万光年,厚一万光年,这个区域由高密度的恒 星组成,主要是年龄大约在一百亿年以上老年的红色恒星,很多证据表明,在中心区域存在着一个巨大的黑洞,星系核的活动十分剧烈。银河系的中心﹐即银河系的自转轴与银道面的交点。   银心在人马座方向﹐1950年历元坐标为﹕赤经174229﹐赤纬 -28°5918。银心除作为一个几何点外﹐它的另一含义是指银河系的中心区域。太阳距银心约10千秒差距﹐位于银道面以北约8秒差距。银心与太阳系之间充斥著大量的星际尘埃﹐所以在北半球用光学望远镜难以在可见光波段看到银心。射电天文和红外观测技术兴起以后﹐人们才能透过星际尘埃﹐在2微米到73厘米波段﹐探测到银心的信息。中性氢21厘米谱线的观测揭示﹐在距银心4千秒差距处o有氢流膨胀臂﹐即所谓“三千秒差距臂”(最初将距离误定为3千秒差距﹐后虽订正为 4千秒差距﹐但仍沿用旧名)。大约有 1﹐000万个太阳质量的中性氢﹐以每秒53公里的速度涌向太阳系方向。在银心另一侧﹐有大体同等质量的中性氢膨胀臂﹐以每秒135公里的速度离银心而去。它们应是1﹐000万至1﹐500万年前﹐以不对称方式从银心抛射出来的。在距银心 300秒差距的天区内﹐有一个绕银心快速旋转的氢气盘﹐以每秒70~140公里的速度向外膨胀。盘内有平均直径为 30秒差距的氢分子云。   在距银心70秒差距处﹐则有激烈扰动的电离氢区﹐也以高速向外扩张。现已得知﹐不仅大量气体从银心外涌﹐而且银心处还有一强射电源﹐即人马座A﹐它发出强烈的同步加速辐射。甚长基线干涉仪的探测表明﹐银心射电源的中心区很小﹐甚至小于10个天文单位﹐即不大于木星绕太阳的轨道。12.8微米的红外观测资料指出﹐直径为1秒差距的银核所拥有的质量﹐相当于几百万个太阳质量﹐其中约有100万个太阳质量是以恒星形式出现的。腥巳衔?o银心区有一个大质量致密核﹐或许是一个黑洞。流入致密核心吸积盘的相对论性电子﹐在强磁场中加速﹐于是产生同步加速辐射。银心气体的运动状态﹑银心强射电源以及有强烈核心活动的特殊星系(如塞佛特星系)的存在﹐使我们认为﹕在星系包括银河系的演化史上﹐曾有过核心激扰活动﹐这种活动至今尚未停息。

银晕

银河晕轮弥散在银盘周围的一个球形区域内,银晕直径约为九万八千光年,这里恒星的密度很低,分布着一些由老年恒星组成的球状星团,有人认为,在银晕外面还存在着一个巨大的呈球状的射电辐射区,称为银冕,银冕至少延伸到距银心一百千秒差距或三十二万光年远。   银河系是一个透镜形的系统,直径约为25千秒差距,厚约为1~2千秒差距。它的主体称为银盘。高光度星、银河星团和银河星云组成旋涡结构迭加在银盘上。银河系中心为一大质量核球,长轴长4~5千秒差距,厚4千秒差距。银河系为直径约30千秒差距的银晕笼罩。银晕中最亮的成员是球状星团。银河系的质量为1.4×1011太阳质量,其中恒星约占90%,气体和尘埃组成的星际物质约占10%。 银河系整体作较差自转。太阳在银道面以北约8秒差距处距银心约10千秒差距,以每秒250公里速度绕银心运转,2.5亿年转一周。太阳附近物质(恒 星和星际物质)的总密度约为0.13太阳质量/秒差距3或 8.8×10-24克/厘米3。银河系是一个Sb或Sc型旋涡星系, 拥有一、二千亿颗恒星,为本星系群中除仙女星系外最大的巨星系。它的视绝对星等为Mv=-20.5。它以 1010年 的时间尺度演化。

编辑本段与太阳位置关系

太阳在银河系中的位置

太阳(包括地球和太阳系)都在猎户臂靠近内侧边缘的位置上,在本星际云(Local Fluff)中,距离银河中心7.94±0.42千秒差距 我们所在的旋臂与邻近的英仙臂大约相距6,500光年。我们的太阳与太阳系,正位在科学家所谓的银河的生命带。   太阳运行的方向,也称为太阳向点,指出了太阳在银河系内游历的路径,基本上是朝向织女,靠近武仙座的方向,偏离银河中心大约86度。太阳环绕银河的轨道大致是椭圆形的,但会受到旋臂与质量分布不均匀的扰动而有些变动,我们目前在接近近银心点(太阳最接近银河中心的点)1/8轨道的位置上。   太阳系大约每2.25—2.5亿年在轨道上绕行一圈,可称为一个银河年,因此以太阳的年龄估算,太阳已经绕行银河20—25次了。太阳的轨道速度是217km/s,换言之每8天就可以移动1天文单位,1400年可以运行1光年的距离。   海顿天象馆的8.0千秒差距的立体银河星图,正好涵盖到银河的中心。

编辑本段银河系的邻居

银河、仙女座星系和三角座星系是本星系群主要的星系,这个群总共约有50个星系,而本地群又是室女座超星系团的一份子。   银河被一些本星系群中的矮星系环绕着,其中最大的是直径达21,000光年的大麦哲伦云,最小的是船底座矮星系、天龙座矮星系和狮子II矮星系,直径都只有500光年。其他环绕着银河系的还有小麦哲伦云,最靠近的是大犬座矮星系,然后是人马座矮椭圆星系、小熊座矮星系、御夫座矮星系、六分仪座矮星系、天炉座矮星系和狮子I矮星系。   在2006年1月,研究人员的报告指出,过去发现银河的盘面有不明原因的倾斜,现在已经发现是环绕银河的大小麦哲伦云的扰动所造成的涟漪。是在她们穿过银河系的边缘时,导致了某些频率的震动所造成的。这两个星系的质量大约是银河的2%,被认为不足以影响到银河。但是加入了暗物质的考量,这两个星系的运动就足以对较大的银河造成影响。在加入暗物质之后的计算结果,对银河的影响增加了20倍,这个计算的结果是根据马萨诸塞州大学阿默斯特分校马丁·温伯格的电脑模型完成的。在他的模型中,暗物质的分布从银河的盘面一直分布到已知的所有层面中,结果模型预测当麦哲伦星系通过银河时,重力的冲击会被放大。

编辑本段研究历史

古代探索史

虽然从非常久远的古代,人们就认识了银河系。但是对银河系的真正认识还是从近代开始的。   1750年,英国天文学家赖特(Wright Thomas)认为银河系是扁平的。1755年,德国哲学家康德提出了恒星和银河之间可能会组成一个巨大的天体系统;随后的德国数学家郎伯特(Lambert Johann heinrich)也提出了类似的假设。到1785年,英国天文学家威廉·赫歇耳绘出了银河系的扁平形体,并认为太阳系位于银河的中心。   1918年,美国天文学家沙普利(Harlow Shapley)经过4年的观测,提出太阳系应该位于银河系的边缘。1926年,瑞典天文学家林得布拉德(Lindblad Bertil)分析出银河系也在自转。

近代研究

十八世纪中叶人们已意识到,除行星、 月球等太阳系天体外,满天星斗都是远方的“太阳”。 赖特、康德和朗伯特最先认为,很可能是全部恒星集合 成了一个空间上有限的巨大系统。   第一个通过观测研究恒星系统本原的是F.W.赫歇耳。 他用自己磨制的反射望远镜,计数了若干天区内的恒星。 1785年,他根据恒星计数的统计研究,绘制了一幅扁而 平、轮廓参差、太阳居其中心的银河系结构图。他用50 厘米和120厘米口径望远镜观测,发现望远镜贯穿本领增 加时,观察到的暗星也增多,但是仍然看不到银河系的边缘。F.W.赫歇耳意识到,银河系远比他最初估计的为大。F.W.赫歇耳死后,其子J.F.赫歇耳继承父业,将恒星计数工作范围扩展到南半天。十九世纪中叶,开始测定恒星的距离,并编制全天星图。1906年,卡普坦为了重新研究恒星世界的结构,提出了“选择星区”计划,后 人称为“卡普坦选区”。他于1922年得出与F.W.赫歇耳的类似的模型,也是一个扁平系统,太阳居中,中心的恒星密集,边缘稀疏。沙普利在完全不同的基础上,探讨银河系的大小和形状。他利用1908~1912年勒维特发现的麦哲伦云中造父变星的周光关系,测定了当时已发现有造父变星的球状星团的距离。在假设没有明显星际消光的前提下,于1918年建立了银河系透镜形模型,太阳不在中心。到二十年代,沙普利模型已得到天文界公认。由于未计入星际消光效应,沙普利把银河系估计过大。到1930年,特朗普勒证实星际物质存在后,这一偏差才得到纠正。   银河系物质约90%集中在恒星内。1905年,赫茨普龙发现恒星有巨星和矮星之分。1913年,赫罗图 问世后,按照光谱型和光度两个参量,得知除主序星外,还有超巨星、巨星、亚巨星、亚矮星和白矮星五个分支。 1944年,巴德通过仙女星系的观测,判明恒星可划分为 星族Ⅰ和星族Ⅱ两种不同的星族。星族Ⅰ是年轻而富金属的天体,分布在旋臂上,与星际物质成协。星族Ⅱ是 年老而贫金属的天体,没有向银道面集聚的趋向。1957年,根据金属含量、年龄、空间分布和运动特征,进而将两个星族细分为中介星族Ⅰ、旋臂星族(极端星族Ⅰ)、 盘星族、中介星族Ⅱ和晕星族(极端星族Ⅱ)。   恒星成双、成群和成团是普遍现象。在太阳附近25 秒差距以内,以单星形式存在的恒星不到总数之半。迄 今已观测到球状星团132个,银河星团1,000多个,还有为 数不少的星协。据统计推论,应当有18,000个银河星团 和500个球状星团。二十世纪初,巴纳德用照相观测,发现了大量的亮星云和暗星云。1904年,恒星光谱中电离钙谱线的发现,揭示出星际物质的存在。随后的分光和偏振研究,证认出星云中的气体和尘埃成分。近年来通 过红外波段的探测发现在暗星云密集区有正在形成的恒 星。射电天文学诞生后,利用中性氢21厘 米谱线勾画出银河系旋涡结构。根据电离氢区的描绘, 发现太阳附近有三条旋臂:人马臂、猎户臂和英仙臂;太阳位于猎户臂的内侧。此外,在银心方向还发现了一条3千秒差距臂。旋臂间的距离约1.6千秒差距。1963年,用 射电天文方法观测到星际分子OH,这是自从1937~1941年间,在光学波段证认出星际分子CH、CN和CH+以来的重 大突破。到1979年底,发现的星际分子已超过50种。   银河系的起源这一重大课题目前还了解得很差。这不仅要研究一般星系的起源和演化,还必 须研究宇宙学。按大爆炸宇宙学假说,我们观测到的全部星系都是1010年前高密态原始物质因密度发生起伏,出 现引力不稳定和不断膨胀,逐步形成原星系,并演化为 包括银河系在内的星系团的。而稳恒态宇宙模型假说则 认为,星系是在高密态的原星系核心区连续形成的。   银河系演化的研究近年来才有一些成就。关于太阳附近老年恒星空间运动的资料表明,在原银河星云的坍缩过程中,最早诞生的是晕星族,它们的年龄是100多亿年,化学成分是氢约占73%,氦约占27%。而大部分气体物质集聚为银盘,并随后形成盘星族。近年还从恒星的形成和演化、元素的丰度的变迁、银核的活动及其在演化中的地位等角度探讨银河系的整体演化。六十年代 发展起来的密度波理论,很好地说明了银河系旋涡结构的整体结构及其长期的维持机制。

编辑本段全景图

2009年12月5日 发表了绘制的最新银河系全景图    2009.12.5 最新发表的全景图

编辑本段最新发现

奇异恒星的伴星

科学家利用NASA的远紫外谱仪探索卫星首次探测到船底座伊塔星(Eta Carinae)的伴星。船底座伊塔星是银河系中最重最奇异的星体,座落在离地球7500光年船底座,在南半球用肉眼就可以清楚的看到。科学家认为船底座伊塔星是一个正迅速走向衰亡的不稳定恒星。   长期以来,科学家们就推断它应该存在着一颗伴星,但是一直得不到直接的证据。间接的证据来自其亮度呈现的规则变化。科学家发现船底座伊塔星在可见光,X-射线,射电波和红外线波段的亮度都呈现规则的重覆模式,因此推测它可能是一个双星系统。最有力的证据是每过5年半,船底座伊塔星系统发出的X-射线就会消失约三个月时间。科学家认为船底座伊塔星温度太低,本身并不能发出X-射线,但是它以每秒300英里的速度向外喷发气体粒子,这些气体粒子和伴星发出的粒子相互碰撞后发出X-射线。科学家认为X-射线消失的原因是船底座伊塔星每隔5年半就挡住了这些X-射线。最近一次X-射线消失开始于2003年6月29日。   科学家推断船底座伊塔星和其伴星的距离是地球到太阳之间的距离的10倍,因为它们距离太近,离地球又太远,无法用望远镜直接将它们区分开。另外一种方法就是直接观测伴星所发出的光。但是船底座伊塔星的伴星比其本身要暗的多,以前科学家曾经试图用地面望远镜和哈勃望远镜观测,但都没有成功。   美国天主教大学的科学家罗辛纳. 而平(Rosina Iping)及其合作者利用远紫外谱仪卫星来观测这颗伴星,因为它比哈勃望远镜能观测到波长更短的紫外线。它们在6月10日,17日观测到了远紫外线,但是在6月27日,也就是在X-射线消失前的两天远紫外线消失了。观测到的远紫外线来自船底座伊塔星的伴星,因为船底座伊塔星温度太低,本身不会发出远紫外线。这意味着船底座伊塔星挡住了X-射线的同时也挡住了伴星。这是科学家首次观测到船底座伊塔星的伴星发出的光,从而证实了这颗伴星的存在。

有三个太阳的恒星

据新华社14日电 据14日出版的《自然》杂志报道,美国天文学家在距离地球149光年的地方发现了一个具有三颗恒星的奇特星系,在这个星系内的行星上,能看到天空中有三个太阳。   美国加州理工学院的天文学家在该杂志上报告说,他们发现天鹅星座中的HD188753星系中有3颗恒星。处于该星系中心的一颗恒星与太阳系中的太阳类似,它旁边的行星体积至少比木星大14%。该行星与中心恒星的距离大约为800万公里,是太阳和地球之间距离的二十分之一。而星系的另外两颗恒星处于外围,它们彼此相距不远,也围绕中心恒星公转。   银河系中的星系多为单星系或双星系,具有三颗以上恒星的星系被称为聚星系,不太多见。   恒星并不是平均分布在宇宙之中,多数的恒星会受彼此的引力影响,形成聚星系统,如双星、三恒星,甚至形成星团,及星系等由数以亿计的恒星组成的恒星集团。

宇宙中生命诞生的普遍性

近日美国宇航局寻找地球以外生命物质存在证据的科研小组研究发现,某些在实际生命化学反应中起到至关重要作用的有机化学物质,普遍存在于我们地球以外的浩瀚宇宙中。研究结果表明,在宇宙深处存在生命物质、或者有孕育生命物质的化学反应发生,这在浩瀚的宇宙中是一种普遍现象。   上述研究来自“美国宇航局艾姆斯研究中心(NASA Ames Research Center)”的一个外空生物科研小组。在该小组工作的科学家道格拉斯-希金斯介绍时称:“根据科研小组最新的研究结果显示,一类在生物生命化学中起至关重要作用的化合物,在广袤的宇宙空间中广泛而且大量地存在着。” 作为该外空生物学研究小组的主要成员之一,道格拉斯-希金斯以第一作者的身份将他们的最新研究成果撰文发表在10月10日出版的《天体物理学》杂志上。   希金斯在描述其研究结果时介绍:“利用美国宇航局斯皮策太空望远镜(Spitzer Space Telescope)最近的观测结果,天文学家在我们所居住的银河系内,到处都发现了一种复杂有机物‘多环芳烃’(PAHs)存在的证据。但是这项发现一开始只得到天文学家的重视,并没有引起对外空生物进行研究的天体生物学家们的兴趣。因为对于生物学而言,普通的多环芳烃物质存在并不能说明什么实质问题。但是,我们的研究小组在最近一项分析结果中却惊喜的发现,宇宙中看到的这些多环芳烃物质,其分子结构中含有‘氮’元素(N)的成分,这一意外发现使我们的研究发生了戏剧性改变。”   该研究小组的另一成员,来自美国宇航局艾姆斯研究中心的天体生物学家路易斯-埃兰曼德拉说:“包括DNA分子在内,对于大多数构成生命的化学物质而言,含氮的有机分子参与是必须的条件。举一个含氮有机物质在生命物质意义上最典型的例子,象我们所熟悉的叶绿素,其对于植物的光合作用起着关键作用,而叶绿素分子中富含这种含氮多环芳烃(PANHs)成分。”   据介绍,在科研小组的研究工作中,除了利用来自斯皮策望远镜得到的观测数据外,科研人员还使用了欧洲宇航局太空红外天文观测卫星的观测数据。在美国宇航局艾姆斯研究中心的实验室中,研究人员对这类特殊的多环芳烃,利用红外光谱化学鉴定技术对其分子结构和化学成分进行了全面分析,找到其中氮元素存在的证据。同时科学家利用计算机技术对这些宇宙中普遍存在的含氮多环芳烃,进行了红外射线光谱模拟分析。   路易斯-埃兰曼德拉同时还表示:“除去上述分析结论以外,更加富有戏剧性的发现是,在斯皮策太空望远镜的观测中还显示出,在宇宙中一些即将死亡的恒星天体周围,环绕其外的众多星际物质中,都大量蕴藏着这种特殊的含氮多环芳烃成分。这一发现从某种意义上似乎也告诉我们,在浩瀚的宇宙星空中,即使在死亡来临的时候,同时也孕育着新生命开始的火种。”

宇宙膨胀与暗能量

通过分析星系团(图中左侧的点),斯隆数字天空观测计划天文学家确定,暗能量正在驱动着宇宙不断地膨胀。   据英国《卫报》报道,证实宇宙正在膨胀是本年度最重大的科学突破。   报道说,近73%的宇宙由神秘的暗能量组成,它是一种反重力。在19日出版的美国《科学》杂志上,暗能量的发现被评为本年度最重大的科学突破。通过望远镜,人类在宇宙中已经发现近2000亿个星系,每一个星系中又有约2000亿颗星球。但所有这些加起来仅占整个宇宙的4%。   现在,在新的太空探索基础上,以及通过对100万个星系进行仔细研究,天文学家们至少已经弄清了部分情况。约23%的宇宙物质是“暗物质”。没有人知道它们究竟是什么,因为它们无法被检测到,但它们的质量大大超过了可见宇宙的总和。而近73%的宇宙是最新发现的暗能量。这种奇特的力量似乎正在使宇宙加速膨胀。英国皇家天文学家马丁·里斯爵士将这一发现称为“最重要的发现”。   这一发现是绕轨道运行的威尔金森微波各向异性探测器(WMAP)和斯隆数字天文台(SDSS)的成果。它解决了关于宇宙的年龄、膨胀的速度及组成宇宙的成分等一系列问题的长期争论。天文学家现在相信宇宙的年龄是137亿年。

银河系真实的地图

据美国国家地理杂志报道,日前,天文学家描绘出了银河系最真实的地图,最新地图显示,银河系螺旋手臂与之前所观测的结果大相径庭,原先银河系的四个主螺旋手臂,现只剩下两个主螺旋手臂,另外两个手臂处于未成形状态。   这个描绘银河系进化结构的研究报告发表在本周美国密苏里州圣路易斯召开的第212届美国天文学协会会议上。3日,威斯康星州立大学怀特沃特分校的罗伯特?本杰明将这项研究报告向记者进行了简述。他指出,银河系实际上只有两个较小的螺旋手臂,与之前天文学家所推断结果不相符。   在像银河系这样的棒旋星系,主螺旋手臂包含着高密度恒星,能够诞生大量的新恒星,与星系中心的长恒星带清晰地连接在一起。与之比较,未成形螺旋手臂所具有的高气体密度不足以形成恒星。   长期以来,科学家认为银河系有四个主螺旋手臂,但是最新的绘制地图显示银河系实际上是由两个主手臂和两个未成形手臂构成。本杰明说,“如果你观测银河系的形成过程,主螺旋手臂连接恒星带具有着重要的意义。同样,这对最邻近银河系的仙女座星系也是这样的。”   绘制银河系地图是一个不同寻常的挑战,这对于科学家而言就如同一条小鱼试图探索整个太平洋海域一样。尤其是灰尘和气体时常模糊了我们对星系结构的观测。据悉,这个银河系最新地图主要基于“斯皮策”空间望远镜红外线摄像仪所收集的观测数据。威斯康星州立大学麦迪逊分校星系进化专家约翰?加拉格尔说,“通过红外线波长,你可以透过灰尘实际地看到我们银河系的真实结构。”目前,“斯皮策”空间望远镜所呈现的高清晰图像使天文学家能够观测大质量恒星是如何进化、宇宙结构是如何成形的。   “斯皮策”空间望远镜科学中心从事摄像仪研究的肖恩?凯里说,“通过这些清晰图片,你将真实地看到个别的太空目标,更加真实地理解银河系的结构特征。”   这张最新的银河系地图包括螺旋手臂密度和位置的数据资料,马萨诸塞州哈佛-史密森天体物理学中心(CfA)马克?里德说,“目前我们开始以立体距离跟踪银河系的螺旋手臂结构。”   CfA的托马斯?戴姆指出,之前人们都认为我们的银河系有两对非常对称的螺旋手臂,但最新研究显示我们之前生活在美丽螺旋手臂星系梦想已破灭。

编辑本段相关信息

周边星系

NGC 7331经常被视为“银河的双胞胎”,从银河系之外回顾我们的银河或许就是这个样子。银河、仙女座星系和三角座星系是本星系群主要的星系,这个群总共约有50个星系,而本地群又是室女座超星系团的一份子。   银河被一些本星系群中的矮星系环绕著,其中最大的是直径达21,000光年的大麦哲伦云,最小的是船底座矮星系、天龙座矮星系和狮子II矮星系,直径都只有500光年。其他环绕著银河系的还有小麦哲伦云,最靠近的是大犬座矮星系,然后是人马座矮椭圆星系、小熊座矮星系、玉夫座矮星系、六分仪座矮星系、天炉座矮星系和狮子I矮星系。   在2006年1月,研究人员的报告指出,过去发现银河的盘面有不明原因的倾斜,现在已经发现是环绕银河的大小麦哲伦云的扰动所造成的涟漪。是在她们穿过银河系的边缘时,导致了某些频率的震动所造成的。这两个星系的质量大约是银河的2%,被认为不足以影响到银河。但是加入了暗物质的考量,这两个星系的运动就足以对较大的银河造成影响。在加入暗物质之后的计算结果,对银河的影响增加了20倍,这个计算的结果是根据麻萨诸塞州大学阿默斯特分校马丁·温伯格的电脑模型完成的。在他的模型中,暗物质的分布从银河的盘面一直分布到已知的所有层面中,结果模型预测当麦哲伦星系通过银河时,重力的冲击会被放大。

穿过空间速度

一般而言,根据爱因斯坦的狭义相对论,任何物体通过空间时的绝对速度是没有意义的,因为在太空中没有合适的惯性参考系统, 可以作为测量银河速度的依据(运动的速度, 总是需要与另一个物体比较才能量度)。   因为各向宇宙微波背景辐射非常的均匀, 只有万分之几的起伏. 所以就让乔治·斯穆特想到了一个方法, 就是测量宇宙微波背景辐射有没有偶极异向性。   在1977年, 美国劳伦斯伯克莱国立实验室的乔治·斯穆特等人, 将微波探测器安装在U-2侦察机 上面, 确切地测到了宇宙微波背景辐射的偶极异向性, 大小为 3.5±0.6 mK, 换算后, 太阳系在宇宙中的运动速度约为 390±60 km/s, 但这个速度, 与太阳系绕行银河系核的速度 220 km/s 方向相反, 这代表银河系核在宇宙中的速度, 约为600 多km/s。   有鉴于此,许多天文学家相信银河以每秒600公里的速度相对于邻近被观测到的星系在运动,大部份的估计值都在每秒130~1,000 公里之间。如果银河的确以每秒600公里的速度在运动,我们每天就会移动5,184万公里,或是每年189 亿公里。相较于太阳系内,每年移动的距离是地球与冥王星最接近时距离的4.5倍。银河

神话传说

世界各地有许多创造天地的神话围绕著银河系发展出来。很特别的是,在希腊就有两个相似的希腊神话故事在解释银河是怎么来的。有些神话将银河和星座结合在一起,认为成群牛只的乳液将深蓝色的天空染白了。在东亚,人们相信在天空中群星间的雾状带是银色的河流,也就是我们所说的天河。   Akashaganga是印度人给银河的名称,意思是天上的恒河。   依据希腊神话,银河是赫拉在发现宙斯以欺骗的手法诱使他去喂食年幼的赫尔克里斯因而溅洒在天空中的奶汁。另一种说法则是赫耳墨斯偷偷的将赫尔克里斯带去奥林匹斯山,趁著赫拉沉睡时偷吸他的奶汁,而有一些奶汁被射入天空,于是形成了银河。   在芬兰神话中,银河被称为鸟的小径,因为它们注意到候鸟在向南方迁徙时,是靠著银河来指引的,它们也认为银河才是鸟真正的居所。现在,科学家已经证实了这项观测是正确的,候鸟确实在依靠银河来引导,在冬天才能到温暖的南方陆地居住。即使在今天,芬兰语中的银河依然使用Linnunrata这个字。   在瑞典,银河系被认为是冬天之路,因为在斯堪的纳维亚地区,冬天的银河是一年中最容易被看见的。   古代的亚美尼亚神话称银河系为麦秆贼之路,叙述有一位神祇在偷窃麦秆之后,企图用一辆木制的运货车逃离天堂,但在路途中掉落了一些麦秆。

银河的未来

目前的观测认为仙女座星系(M31)正以每秒300公里的速度朝向银河系运动,在30-40亿年后可能会撞上银河系。但即始真的的发生碰撞,太阳以及其他的恒星也不会互相碰撞,但是这两个星系可能会花上数十亿年的时间合并成椭圆星系。   天文学家发现银河系“比之前想象的要大”   据英国广播公司6日报道,由国际天文学家组成的研究小组发现,地球所在的银河系比原来以为的要大,运转的速度也更快。    银河系

天文学家利用在夏威夷、加勒比海地区和美国东北部的天文望远镜观察得出结论,银河系正以每小时90万公里的速度转动,比之前估计的快大约百分之十。   银河系的体积也比之前预计的大一半左右。   科学家们指出,体积越大,与邻近星河发生灾难性撞击的可能性也增大。   不过,即使发生也将是在二、三十亿年之后。   美国哈佛-史密森天体物理学中心的研究员利用“超长基线阵列”(Very LongcenterArray)仪器来推论地球所在银河系的质量和速度。   研究员表示,使用这个方法找出的数据更准确,比较以前的方式所需要的假定更小。   研究员还说,最新发现显示银河系与仙女座星系(Andromeda Galaxy)的大小相约。   仙女座星系、银河系和三角星系是地球所在的星系中三个最大的星系群。   此前,科学家一直认为仙女座最大,银河系只是仙女座的“小妹妹”。   研究员在美国加利福尼亚州第213届美国太空学会会议上发表有关研究结果。

常用数据表

质量≈10E11太阳质量   直径≈100千秒差距   银心方向:α=17h42m.5, δ=-28°59′   太阳距银心≈9千秒差距   北银极:α=12h49m, δ=-27°2'   太阳处银河系旋转速度≈250公里/秒   太阳处银河系旋转周期≈220E6年   相对于3K背景的运动速度≈600公里/秒   (朝向α=10h, δ=-20°方向)

红巨星科技名词定义

中文名称:红巨星 英文名称:red giant 定义:光谱为K型或更晚型的巨星。 所属学科: 天文学(一级学科) ;恒星和银河系(二级学科) 本内容由全国科学技术名词审定委员会审定公布

百科名片

当一颗恒星度过它漫长的青壮年期——主序星阶段,步入老年期时,它将首先变为一颗红巨星。称它为“巨星”,红巨星是恒星燃烧到后期所经历的一个较短的不稳定阶段,根据恒星质量的不同,历时只有数百万年不等,这是恒星几十亿年甚至上百亿年的稳定期相比是非常短暂的。红巨星时期的恒星表面温度相对很低,但极为明亮,因为它们的体积非常巨大。在赫罗图上,红巨星是巨大的非主序星,光谱属于K或M型。所以被称为红巨星是因为看起来的颜色是红的,体积又很巨大的缘故。金牛座的毕宿五和牧夫座的大角星都是红巨星。

当一颗恒星度过它漫长的青壮年期——主序星(main sequence)阶段,步入老年期时,它将首先变为一颗红巨星。   称它为“巨星”,是突出它的体积巨大。在巨星阶段,恒星的体积将膨胀到十亿倍之多。   称它为“红”巨星,是因为在这恒星迅速膨胀的同时,它的外表面离中心越来越远,所以温度将随之而降低,发出的光也就越来越偏红。不过,虽然温度降低了一些,可红巨星的体积是如此之大,它的光度也变得很大,极为明亮。肉眼看到的最亮的星中,许多都是红巨星。   在赫罗图( Hertzsprung-Russell diagram)中, 红巨星分布在主星序区的右上方的一个相当密集的区域内,差不多呈水平走向。   恒星依靠其内部的热核聚变而熊熊燃烧着。核聚变的结果,是把每四个氢原子核结合成一个氦原子核,并释放出大量的原子能,形成辐射压。处于主星序阶段的恒星,核聚变主要在它的中心(核心)部分发生。辐射压与它自身收缩的引力相平衡。 氢的燃烧消耗极快,中心形成氦核并且不断增大。随着时间的延长,氦核周围的氢越来越少    红巨星

,中心核产生的能量已经不足以维持其辐射,于是平衡被打破,引力占了上风。有着氦核和氢外壳的恒星在引力作用下收缩,使其密度、压强和温度都升高。氢的燃烧向氦核周围的一个壳层里推进。这以后恒星演化的过程是:内核收缩、外壳膨胀——燃烧壳层内部的氦核向内收缩并变热,而其恒星外壳则向外膨胀并不断变冷,表面温度大大降低。这个   过程仅仅持续了数十万年,这颗恒星在迅速膨胀中变为红巨星。红巨星一旦形成,就朝恒星的下一阶段——白矮星进发。当外部区域迅速膨胀时,氦核受反作用力却强烈向内收缩,被压缩的物质不断变热,最终内核温度将超过一亿度,点燃氦聚变。最后的结局将在中心形成一颗白矮星

红巨星是一种演化晚期的恒星,广义上包括氢燃烧以后离开主星序的所有的大光度的恒星,它们位于赫—罗图的右方或右上方,属于巨星支或超巨星支,通常这些巨星支或超巨星支的恒星大部分是体积和光度均很大的K型星和M型星,因而是光色发红的低温恒星,故称为红巨星,一部分则为 红巨星

O型和B型的蓝巨星或蓝白巨星,还有一些为亚巨星支的G、F、A型黄巨星或黄白巨星、白巨星,这类天体的一部分靠近主序的是刚刚从主序移出不久的主序后恒星,另一些则是演化过程中的处于某一阶段的形式,在这一星族中,存在很多型的变星,如造父变星、天琴座RR型变星等,除此之外,一些处于演化早期的恒星也出现在这一区域中,如金牛座的T型星等,但这一类的恒星周围常有弥漫的气体云,而一般的红巨星则没有,这是两者现象的一个不同之处。各类质量的恒星转化为红巨星的现象是不同的,对于质量较小的恒星(小于太阳质量的一半),氢耗尽后中心发生十分缓慢的收缩,最终在未引起氦燃烧以前就处于简并态的电子气的平衡态,因而收缩就会停止,而外壳则稍稍向外膨胀一下,即失去了可见光谱的辐射能力,转化为核心物质周围的冷的星云,核心部分外层剩余的氢由于不足以支持星体的辐射而逐渐熄灭,逐渐向简并态电子气平衡的核心收缩。   星体核心物质转化为一颗白矮星而消亡,质量更大一些的、在太阳质量1.8—2.2倍以下的恒星,氢耗尽以后核心也收缩为电子气的简并态平衡状态,由于外层的氢燃烧产生的氦不断加入,氦核心质量不断增大,因而缓慢向内收缩,当中心的氦核心质量增大到0.45个太阳质量时,氦核心收缩的温度使氦被点燃,核心物质在简并态电子气平衡的条件下发生核燃烧,产生的热量使氦核心发生膨胀,进而恢复为电子气的非兼并态,然后形成稳定的核燃烧,质量更大的恒星,内部会在非简并态下直接发生核燃烧。   对于质量在太阳1.5倍以下的恒星,它在赫—罗图上的移动轨迹是一条底部略有曲折的斜向上的曲线,当恒星移动到这条曲线的顶端时,即发生氦燃烧,尔后,由于恒星物质的热逃逸,氦燃烧变得平稳,光度下降,移至略向左倾斜一点的位置,处于长期的停留状态,而质量在太阳1.5倍以上的恒星,在赫—罗图上的移动曲线主要表现为一条水平的曲折的向上移动的轨迹,对于质量在太阳10倍以下的恒星,在移向赫—罗图右端时发生氦燃烧,质量大于太阳10倍的恒星,在离开主序后的左端部位即发生氦燃烧,氦燃烧的结果是生成碳。   这个反应通常称为反应,实际上是按照上面两步进行的,直接进行反应的几率很小,由于生成的铍是具有放射性的,只要在非常短的时间内就会重新分解为氦,所以第二步的反应必须紧接着第一步的反应很快地进行,反应才能完整地发生,这就要求星体内部具有较高的密度和温度,这和氢的燃烧大不相同了。恒星内部的氦燃烧的时间比氢燃烧短得多,像太阳这样的恒星可持续10亿年,而质量在太阳几倍到几十倍的恒星,就只有几十万年到几千年,比主序是的寿命短得多,这就是为什么恒星大多分布集中在主序上的原因.

红矮星科技名词定义

中文名称:红矮星 英文名称:red dwarf 定义:光谱为K型或更晚型的矮星。 所属学科: 天文学(一级学科) ;恒星和银河系(二级学科) 本内容由全国科学技术名词审定委员会审定公布

百科名片

红矮星(red dwarf)是指表面温度低、颜色偏红的矮星,尤指主序星中比较“冷”的M型及K型恒星,这些恒星质量在0.8个太阳质量以下,表面温度为2,500至5,000K。除太阳外最接近地球的恒星比邻星(Proxima Centauri)便是一颗红矮星。

根据赫罗图,红矮星在众多处于主序阶段的恒星当中,其大小及温度均相对较小和低,在光谱分类方面属于K或M型。它们在恒星中的数量较多,大多数红矮星的直径及质量均低于太阳的三分一,表面温度也低于3,500 K。释出的光也比太阳弱得多,有时更可低于太阳光度的万分之一。又由于内部的氢元素核聚变的速度缓慢,因此它们也拥有较长的寿命。红矮星的内部引力根本不足把氦元素聚合,也因此红矮星不可能膨胀成红巨星,而逐步收缩,直至氢气耗尽。也因为一颗红矮星的寿命可多达数百亿年,几乎和宇宙的年龄一样长,因此不可能有任何垂死的红矮星。

编辑本段其它资料

人们可凭着红矮星的悠长寿命,来推测一个星团的大约年龄。因为同一个星团内的恒星,其形成的时间均差不多,一个较年老的星团,脱离主序星阶段的恒星较多,剩下的主序星之质量也较低,惟人们找不到任何脱离主序星阶段的红矮星,间接证明了宇宙年龄的存在。   人们相信,宇宙众多恒星中,红矮星占了大多数,大约75%左右。例如离太阳最近的恒星,半人马座的南门二比邻星,便是一颗红矮星,其光谱分类为M5,视星等11.0。   至2005年,人们首度在红矮星身上,发现有太阳系外行星围绕旋转,第一颗行星的质量与海王星差不多,日距约为600万公里(0.04 AU),其表面度约为摄氏150°C。2006年,人们又发现一颗与地球差不多的行星绕着另一颗红矮星旋转,这颗行星的日距为3.9亿公里(2.6 AU),表面温度为摄氏零下220°C

当我们抬起双眼,仰望夜空的时候,我们其实遗憾地错过了银河系中数量最多的一类恒星,即红矮星。我们的银河系(也许所有星系都是如此)中70% 的恒星都是红矮星,或者叫做M 型矮星,它们比我们旁边的这颗光芒四射的太阳的体积小,温度低,也更加暗淡。它们的光芒实在是太微弱了,如果不借助天文望远镜,我们不可能看到任何一颗红矮星。   美国天体物理学家在太阳系边缘发现一颗新的恒星,该恒星编号为SO25300.5+165258——一颗位于白羊座方向离开太阳仅为7.8光年的黯淡红矮星。美国宇航局戈达德航天飞行中心天体物理学家博纳德·捷尔加登博士指出:“发现这颗恒星邻居使我们感到十分惊喜而且非常意外,因为我们完全没有刻意寻找它,发现它纯属偶然。”帮助捷尔加登博士工作的还有美国宇航局喷气推进实验室的史蒂文·普拉弗多博士。   如果计划的新研究证实最初的距离测量,则这颗新恒星将是继阿尔法半人马星座(Proxima Centauri,距太阳仅4光年多一点)和巴纳德恒星(距离地球仅为6光年)之后的第三颗最接近太阳的邻居。   计算结果表明,发现的这颗红矮星质量约为太阳质量的70%,而其亮度要比太阳亮度弱30万倍。正是因为这一缘故,地球上的天文学家才一直没有发现它。

宇宙的起源:
编辑本段相关资料

目前并非所有观察数据都能使天文学家感到满意,例如,尽管SO25300.5+165258很像М6.5类红矮星,却仍然是一颗新恒星,由于某种原因,它的亮度比距离地球7.8光年М6.5类红矮星典型代表亮度弱3倍,因此天文学家不排除这样的可能性,即在检验测量结果之后查明这颗新恒星的距离会有些变大。   现在,美国海军天文台天文学家正在重新检验美国宇航局天体物理学家获得的,有关这颗新恒星距离和亮度的数据。

编辑本段存在生命的可能性

由于体积和亮度的原因,长期以来,很少有天文学家投身到红矮星的科学研究中。几十年来,科学家认为红矮星附近根本不可能有智慧生命。假如红矮星周围有行星围绕,也会由于它们之间相距过近,行星完全被红矮星“ 锁定”,就如同月球被地球锁定一样。行星将只有一面向着它的“ 太阳”,也就是红矮星;而另一面永远处于黑暗之中。因此,这个行星上将出现极端恶劣的环境,在黑夜的一面任何大气气体都将被冻住,白昼的一面却完全暴露在恒星射线的照射之下。难以想像,这样的行星环境会有生命存活,于是,红矮星几乎毫无争议地被排除在地外生命探索目标的名单外。   [1]但是最近,又有美国科学家提出,红矮星可能更适合孕育生命。美国维拉诺瓦大学的科学家最近在美国天文学会的一次学术会议上说,他们计算了20颗红矮星的辐射,发现如果一颗行星的大气层和磁场足以散射和反射有害射线,其环境就适合生命存在。此外,尽管引力作用会逐渐使行星以固定的一面对着红矮星、另一半得不到光照,但空气流动能传递热量,使行星背阴面也温暖有如夏夜。红矮星上的核聚变很缓慢,这使它们的寿命非常长,可以保持几十亿年甚至更长久的稳定状态,这对生命发展是有利的。与之相比,太阳已经再只能支持地球生命50亿年,此后将膨胀变成红巨星,把地球烤焦并吞噬。

编辑本段示例

矮星(dwarf star)是一个过去的天文名词,这是过去恒星分类把恒星分为巨星和矮星时代所遗留下来的用,例如在当时太阳便被界定为一颗典型的矮星,矮星其实也是恒星的一种,也是以热核反应发光发热。由于这名词很容易和恒星演化后期的白矮星(white dwarf)混淆,所以在天文界已很少使用,而以主序星(Main sequence star)这名词代替,例如太阳为G型的主序星。   红矮星(red dwarf)是指表面温度低、颜色偏红的矮星,尤指主序星中比较“冷”的M型及K型恒星,这些恒星质量在0.8 个太阳质量以下,表面温度为2,500至5,000 绝对温度。除太阳外最接近地球的恒星 — 比邻星(Proxima Centauri) — 便是一颗红矮星。   亦有些书中的红矮星,是指由白矮星(white dwarf) 过渡至黑矮星(black dwarf) 的其中一个阶段,白矮星慢慢冷却,先成为黄矮星(yellow dwarf)、红矮星 (red dwarf)、棕矮星(brown dwarf),最后是完全死寂的黑矮星。( 注 :黑矮星是一颗已死亡的恒星,中心的热核反应已停止。)

编辑本段形成原因

恒星开始核反应后在反抗引力的持久斗争中,其主要武器就是核能。它的核心就是一 红巨星

颗大核弹,在那里不断地爆炸。正是因为这种核动力能自我调节得几乎精确地与引力平衡,恒星才能在长达数十亿年的时间里保持稳定。热核反应发生在极高温度的原子核之间,因而涉及物质的基本结构。在太阳这样的恒星中心,温度达到一千五百万开氏度,压强则为地球大气压的三千亿倍。在这样的条件下,不仅原子失去了所有电子而只剩下核,而且原子核的运动速度也是如此之高,以至于能够克服电排斥力而结合起来,这就是核聚变。   恒星是在氢分子云的中心产生的,因而主要由氢组成。氢是最简单的化学元素,它的原子核就是一个带正电荷的质子,还有一个带负电荷的电子绕核旋转。恒星内部的温度高到使所有电子都与质子分离,而质子就像气体中的分子在所有方向上运动。由于同种电荷互相排斥,质子就被一种电“盔甲”保护着,从而与其他质子保持距离。但是,在年轻恒星核心的一千五百万开氏度的高温下,质子运动得如此之快,以至于当它们相互碰撞时就能够冲破“盔甲”而粘合在一起,而不是像橡皮球那样再弹开。四个质子聚合,就成为一个氦核。氦是宇宙中第二位最丰富的元素。氦核的质量小于它赖以形成的四个质子质量之和。这个质量差只是总质量的千分之七,但是这一点质量损失转化成了巨大的能量。像太阳那样的恒星有一个巨大的核,在那里每秒钟有六亿吨氢变成氦。巨大的核能量朝向恒星外部猛烈冲击就能阻止引力收缩。   然而,“恒定”的演化历程终将结束,当所有的氢都变成了氦时,核心的火就没有足够的燃料来维持,恒星在主序阶段的平静日子就到了尽头,大动荡的时期来到了。一旦燃料用光,热核反应的速率立即剧减,引力与辐射压之间的平衡被打破了,引力占据了上风。有着氦核和氢外壳的恒星,在自身的重力下开始收缩,压强、密度和温度都随之升高,于是恒星外层尚未动用过的氢开始燃烧,产生的结果是外壳开始膨胀,而核心在收缩[3]?。   在大约一亿度的高温下,恒星核心的氦原子核聚变成为碳原子核。每三个氦核聚变成一个碳核,碳核再捕获另外的氦核而形成氧核。这些新反应的速度与缓慢的氢聚变完全不同。它们像闪电一样快地突然起爆(氦闪耀),而使恒星不得不尽可能地相应调整自己的结构。经历约一百万年后,核能量的外流渐趋稳定。此后的几亿年里,恒星处于暂时的平稳,核区的氦在渐渐消耗,氢的燃烧越来越向更外层推进。但是,调整是要付出代价的,这时的恒星将膨胀得极大,以使自己的结构适应于光度的增大。它的体积将增大十亿倍。这个过程中恒星的颜色会改变,因为其外层与高温的核心区相距很远,温度就低了下来。这种状态的恒星称为红巨星。   按一般理论,红巨星应有很厚的对流包层。一般认为,不少恒星在红巨星阶段大概要失去外层物质(这种物质可能形成行星状星云),然后成为白矮星。看来红巨星是大多数恒星要经过的重要演化阶段,但要搞清楚红巨星前后的演化过程,还需要解决许多实测问题和理论问题。   红巨星一旦形成,就朝恒星的下一阶段——白矮星进发。当外部区域迅速膨胀时,氦核受反作用力却强烈向内收缩,被压缩的物质不断变热,最终内核温度将超过一亿度,点燃氦聚变。最后的结局将在中心形成一颗白矮星。

编辑本段缩小之谜

天文学家声称,位于猎户星座的一颗超大质量红巨星在过去15年里体积 神秘红巨星“参宿四”在15年间体积缩小15%

竟缩小了15%,但天文学家仍无法解释这颗神秘红巨星缩小之谜。   这颗红巨星叫做“参宿四”,天文学家认为它是一颗红巨星,类似的超大质量恒星都接近生命结束时期,这颗红巨星体积已膨胀至最初的100倍,预计它最终以超新星形式爆炸结束生命,或者不产生猛烈爆炸最终崩溃形成黑洞。   参宿四是迄今天文学家在宇宙中观测到的十颗最明亮的恒星之一,它是天文学家所熟悉的天文观测目标,也是天文学家首次观测到的超大质量恒星,现今这颗红巨星是哈勃望远镜可以观测到的清晰圆盘状恒星,而不是一个模糊的光点,这是哈勃望远镜能够拍摄到表面状态的第一颗恒星。   目前这项最新研究报告发表在美国加利福尼亚州帕萨迪那市美国天文学学会会议上,这项最新研究是基于伯克利市红外立体空间干涉仪(ISI)观测的。1993年,天文学家测量参宿四的直径为5.5个天文单位,1个天文单位相当于地球与太阳之间的距离——1.5亿公里。由于过去15年里,它的直径缩小了15%,这就相当于缩小了金星与太阳之间的距离。   加利福尼亚州大学伯克利分校物理学退休教授查尔斯-汤斯(Charles Townes)说:“观测到这一变化令人非常震惊,我们将在未来几年里继续观测该恒星是否仍在缩小或恢复正常体积。”汤斯于1964年发明了激光和微波激射器而获得了诺贝尔物理奖。   研究人员称,虽然这颗恒星的体积在缩小,但是在过去15年里它的可见亮度并没有减弱。伯克利分校太空科学实验室物理学家爱德华-威斯诺维(Edward Wishnow)说:“我们并不知道这颗恒星为什么会缩小,考虑到我们对于星系和遥远宇宙的认识,我们只是了解甚少,关于恒星以及红巨星在生命末期所出现的变化,我们掌握得并不多。”   汤斯将计划继续对参宿四进行观测,希望能够发现该恒星直径变化的模式。他称:当你更加准确地研究一些事情时,你将获得更多令人惊奇的发现,并能充分地揭示出事物的本质和重要性。

编辑本段巨星真相

红巨星衰亡时期外围炽热物质膨胀范围模型。以太阳系为参照, 三个行星轨道从内向外依次是地球、火星和木星。 红巨星

今天的全球变暖日益明显,但是与天文学家近日从望远镜设备中观测的宇宙中恒星的高温膨胀过程相比,简直就是小巫见大巫了。   通过国际天文学家合作研究发现,通过对宇宙深处数颗衰老膨胀的恒星及其周边环境的仔细观测,进一步揭开宇宙中衰亡恒星——红巨星的真实面目;研究结果使我们可以清晰的预见数十亿年后地球末日来临时的情景:我们赖以生存的地球最终将面临高温炽热的无情吞噬。因为经过天文学家测算,恒星在衰亡时将向外不断膨胀,到那时候曾给予地球温暖阳光的太阳最终也会把地球彻底烤干。   此次天文学家对所观测的猎户座一等星星宿四(Betelgeuse)和心大星(Antares)均属于米拉级恒星,是红巨星中体积最大的一类衰亡恒星,由于其体积异常庞大有时也会被成为红超巨星。科学解释认为在这类米拉级恒星星体中,供给其热核反应堆能量的氢元素已经基本耗尽,此时这种衰亡恒星便会不断向外围膨胀,其扩张范围的直径将大大超出地球绕日轨道。而且中心的老恒星会象心脏一样有规律地膨胀和收缩,这种规律性搏动周期大约仅需一年左右时间便可完成一次。   据法国巴黎天文台的研究人员盖伊-佩兰介绍,当的太阳在数十亿年后也进入到这一阶段,届时其周边温度将急剧升高。预计随着恒星的规律性搏动,地球表面温度最高将可能达到3000摄氏度。“这一直接的后果就是,地球上的生命将消失殆尽。”佩兰博士说:“只不过好在这是数十亿年以后的事了。” 此次天文学家在研究工作中将数台大型望远镜组合起来,形成了一个高效的超大型天文观测体系,利用干涉测量技术,首次清晰地观测到了恒星表面以外的光球层区域。此次研究中    红巨星

的近红外观测数据均来自美国亚利桑那州史密森天体物理天文台。天文学家介绍称:“每经历一次规律性搏动过程,这些红巨星便会失去部分质量,形成大量的星级介质。”根据佩兰博士的解释认为,实际测算显示出每当这些衰老恒星膨胀收缩一次,就会有相当于三分之一个地球那么多的物质被抛射到宇宙星际空间中,届时我们将看到异常美丽的星云扩散场面。不过到目前为止,科学家们还不清楚具体是什么原因产生这一奇异过程。佩兰博士说:“现在的观点认为,这种扩张收缩过程使得恒星物质漂浮出星体表面,并形成了宇宙尘埃,同时在恒星发出象风一样的光热辐射作用下远离星体,被吹向广袤宇宙空间中。”   在此次最新研究中发现,就在这种恒星辐射风的后面,还存在着一层由水汽和一氧化碳物质层,这一气体层远离恒星表面并将星体团团围住。这使得研究人员感到异常困惑,因为光靠大气压力的作用还不足以能支撑这一又高又厚的物质层。佩兰和他的研究小组认为,很可能恒星离子在其中起到了一定作用。同时此次天文学家还通过研究进一步核实了米拉级恒星的直径大小,他们认为此类红巨星其表层直径比早先认为的要小,大于只有原先预计的70%左右。以太阳系作为参照,其恒星表层直径大约在火星绕日轨道(大于地球绕日轨道)范围左右;而最新发现的水汽和一氧化碳混合层则远离恒星表层,其与恒星中心点距离大约相当于太阳系中火星木星之间的小行星带轨道半径距离。   此次研究小组美国成员,来自亚利桑那州图桑市的美国国家光学天文台的斯蒂芬-瑞基韦表示:“此次的发现解决了以往对米拉级恒星体积大小的争论,同时也进一步描述出恒星衰老搏动的过程及其组成物质,这些发现对于其它恒星也将非常适用。”   到此为止我们可以最终得出这样的结论:当我们的太阳衰老膨胀时,地球将被彻底吞噬并最终蒸发干净,同时紧挨地球的火星最终也将面临被烧焦的厄运。现在所剩下的问题之一就是,象有些科学家推测的那样,地球上的生命迹象到底是终结于极度[4]?干旱呢,还是被最终被炽热的太阳膨胀物吞噬后来个彻底的燃尽呢?只有未来才能给出答案!

  

爱华网本文地址 » http://www.413yy.cn/a/25101013/181446.html

更多阅读

何新:人类的起源与华夏种族的形成

人类的起源与华夏种族的形成-何新博客一、现代人的起源(一)中国人的起源问题。中华民族是一个晚近的概念,指现在世界上的全体华人。中华民族的前身是华夏种族。4000年前的夏民族与更早的华胥民族,是华夏民族的前身。关于中国人的起源

梦想成真的法则:秘密

梦想成真的法则:秘密第一章“秘密”为何物 1. 宇宙能给你想要的一切你对自己说的话,就是对宇宙下订单,宇宙就好像是一个神奇的工厂,接收到你的订单后,就会制造出你要的东西给你。你说“我很沮丧”!那么,你就会越来越沮丧!你说“我很倒霉,我

声明:《宇宙的起源:》为网友港岛少年分享!如侵犯到您的合法权益请联系我们删除