Kroneckerdelta维基定义 kroneckerdelta n 0

http://en.wikipedia.org/wiki/Kronecker_delta

Kronecker delta

From Wikipedia, the free encyclopediaNot to be confused with theDirac deltafunction.

Inmathematics,theKroneckerdeltaorKronecker'sdelta, named afterLeopoldKronecker, is afunctionoftwovariables,usuallyintegers, which is 1 ifthey are equal and 0 otherwise. So, for example,

,but

It iswritten as the symbolδij,and treated as a notational shorthand rather than as afunction.

Contents

[hide]
  • 4Relationship to the Dirac delta function
  • 5Extensions of the delta function
  • 6Integral representations
  • 7The Kronecker comb
  • 8Kronecker Integral[2]
  • 9References
  • 10See also
  • [edit]Alternate notation

    UsingtheIversonbracket:

    Often, thenotationδiis used.

    Inlinear algebra,it can be thought of as atensor, and iswritten.Sometimes the Kronecker delta is called the substitutiontensor.[1]

    [edit]Digital signal processing

    An impulse function

    Similarly,indigitalsignal processing, the same concept is represented as afunction on(theintegers):

    The functionis referred to as animpulse,orunitimpulse. And when it stimulates a signal processing element,the output is called theimpulseresponseof theelement.

    [edit]Properties of the delta function

    TheKronecker delta has the so-calledsiftingpropertythat for:

    and if theintegers are viewed as ameasure space,endowed with thecountingmeasure, then this property coincides with the definingproperty of theDirac deltafunction

    and in factDirac's delta was named after the Kronecker delta because of thisanalogous property. In signal processing it is usually the context(discrete or continuous time) that distinguishes the Kronecker andDirac "functions". And by convention,generallyindicates continuous time (Dirac), whereas argumentslikei,j,k,l,m,andnareusually reserved for discrete time (Kronecker). Another commonpractice is to represent discrete sequences with square brackets;thus: .It is important to note that the Kronecker delta is not the resultof directly sampling the Dirac delta function.

    TheKronecker delta is used in many areas of mathematics.

    [edit]Linear algebra

    Inlinear algebra,theidentitymatrixcan be writtenas.

    If it isconsidered as atensor, the Kroneckertensor, it can be writtenwithacovariantindexjandcontravariantindexi.

    This (1,1)tensor represents:

    [edit]Relationship to theDirac deltafunction

    Inprobabilitytheoryandstatistics, theKronecker delta andDirac deltafunctioncan both be usedto represent adiscretedistribution. If thesupportofa distribution consists of points,with corresponding probabilities,then theprobabilitymass functionofthe distribution overcanbe written, using the Kronecker delta, as

    Equivalently, theprobabilitydensity functionofthe distribution can be written using theDirac deltafunctionas

    Undercertain conditions, the Kronecker delta can arise from sampling aDirac delta function. For example, if a Dirac delta impulse occursexactly at a sampling point and is ideally lowpass-filtered (withcutoff at the critical frequency) per theNyquist–Shannonsampling theorem, the resulting discrete-time signal will be aKronecker delta function.

    [edit]Extensions of the delta function

    In the samefashion, we may define an analogous, multi-dimensional function ofmany variables

    Thisfunction takes the value 1 if and only if all the upper indicesmatch the corresponding lower ones, and the value zerootherwise.

    [edit]Integral representations

    For anyintegern, using astandardresiduecalculationwe can write an integral representation for the Kronecker delta asthe integral below, where the contour of the integral goescounterclockwise around zero. This representation is alsoequivalent to a definite integral by a rotation in the complexplane.

    [edit]The Kronecker comb

    TheKronecker comb function with periodNisdefined (using digital notation) as:

    whereNandnareintegers. The Kronecker comb thus consists of an infinite series ofunit impulsesNunitsapart, and includes the unit impulse at zero. It may be consideredto be the discrete analog of theDirac comb.

    [edit]Kronecker Integral[2]

    TheKronecker delta is also called degree of mapping of one surfaceinto another. Suppose a mapping takes place fromsurfaceSuvwtoSxyzthatare boundaries of regions,RuvwandRxyzwhichis simply connected with one-to-one correspondence. In thisframework, if s and t are parameters forSuvw,andSuvwtoSxyzareeach oriented by the outer normal n:

    Kroneckerdelta维基定义 kroneckerdelta n 0
    u=u(s,t),v=v(s,t),w=w(s,t),

    while thenormal has the direction of:

    Letx=x(u,v,w),y=y(u,v,w),z=z(u,v,w) be defined and smooth in a domaincontainingSuvw, and letthese equations define the mapping ofSuvwintoSxyz. Then thedegreeδof mappingis1 / 4πtimes the solidangle of the image S ofSuvwwithrespect to the interior point ofSxyz, O. If Ois the origin of the region,Rxyz, then thedegree,δis given by theintegral:

    [edit]References

    1. ^Trowbridge, 1998.Journal of Atmospheric and Oceanic Technology. V15, 1 p291
    2. ^Kaplan, Wilfred(2003),AdvancedCalculus, Pearson Education. Inc,p.364,ISBN0-201-79937-5

      

    爱华网本文地址 » http://www.413yy.cn/a/25101013/170483.html

    更多阅读

    密歇根州立大学——维基百科 华盛顿州维基百科

    密歇根州立大学[编辑]维基百科,自由的百科全书密歇根州立大学校训 Advancing Knowledge. Transforming Lives.创建时间 1855年2月12日学校类型 公立捐款 $17亿(2012)[1]校长 Lou Anna Simon教师 4985学生 47954本科生 36675研究生 1127

    转载 维基百科:冷战时间表

    原文地址:维基百科:冷战时间表作者:王橙宇维基百科:冷战时间表分类 ·主题 · 时间表两极格局:美利坚合众国 · 苏维埃社会主义共和国联盟时间表:40

    转载 八尺协定来自维基百科 八尺协定

    原文地址:八尺协定来自维基百科作者:小草望春2八尺协定[编辑]八尺协定是一则网络谣言(或钓鱼文)中提到的一个条约,又称寂寂密约,作者据信为人人网的博主谭昊(网名“谈日天”)[1]内容是中共和日本在日本关东军控制下的旅顺的八尺阁签订的,签

    声明:《Kroneckerdelta维基定义 kroneckerdelta n 0》为网友寂莫成雪分享!如侵犯到您的合法权益请联系我们删除