初一数学教案2 初一数学教案
【教学目标】
1.进一步经历运用方程解决实际问题的过程,初步体会方程是刻画现实世界的有效数学模型;
2.学会合并(同类项)及移项,会解"ax+bx=c"及"ax+b=cx+d"类型的一元一次方程;
3.初步体会一元一次方程的应用价值,感受数学文化;
4.理解解方程的目标,体会解法中蕴涵的化归思想.
〖探索1〗
等式一边的项可以移到等式的另一边吗?
例如:3+5=8这是一个等式.把左边的一项"3"移到右边,得到什么式子?这时等式成立吗?
如果把"3"变号后移到的另一边呢?
换一个等式-6-7=-13试一试.
任写一个等式再试一试.
〖探索2〗
(1)方程x+3=-1的解是多少?
(1)把方程x+3=-1中左边的常数项”3”移到右边,就得到方程x=-1+3.所得的方程的解与原方程的解一样吗?
〖探索3〗
怎样求方程x-7=5的解?
有的学生可能还是乐意用算术解法,教师要有足够的耐心.
甲的解法是:这是一个表示减法运算的式子,x是被减数,7是减数,5是差.所以有x=5+7(理由是_______________________),于是x=12.
乙的解法是:这是一个等式,根据等式的性质1,等式两边________,结果仍相等,把方程的两边都加7,得x-7+7=5+7,于是x=12.
丙的解法是:把方程左边的项-7,变号(即变成+7)后移到方程的右边,得x=5+7,于是x=12.
议一议,三种解法,你乐意用哪一种?
〖归纳〗
解方程时,把方程一边的某项变号后移到另一边,这种变形叫移项.
注意:移项的要点不在移动,而在于变号.
想一想:移项为什么要变号?移项的根据是什么?
〖探索4〗
以下各方程的“移项”对不对?为什么?
(1)x+5=7,移项得x=7+5;
(2)3-x=7,移项得-x=7-3;
(3)2x=7x,移项得2x+7x=0;
(4)2x=7x-6,移项得2x-7x=-6.
〖探索5〗
移项的目的是把方程化为ax=b的形式,以下的“移项” 都达不到预期的目的.你认为应该怎样做才对?
(1)3x+6=0, 移项得0=-3x-6;
(2)3x=5x-7,移项得3x+7=5x;
(3)3-x=5x, 移项得3-x-5x=0;
(4)3x+20=7x-18, 移项得-7x+18=-3x-20.
〖例题学习〗
P81.例1
〖练习〗
P81.练习
〖作业〗
P84.习题2,3,9
〖补充作业〗
1.一个两位数,个位上的数是十位上的数的2倍,如果把十位上的数与个位上的数对调,那么所得到的两位数比原两位数大36.求原两位数.
解:设原两位数十位上的数为x ,
那么,根据个位上的数是十位上的数的2倍,得个位上的数是________,
则原两位数记为___________.
因为对调后所得到的新两位数的十位上的数为______,个位上的数为______,新两位数应记为___________________.
根据新两位数比原两位数大36,列方程:_____________________.
解这个方程得__________.答:______________________________.
2.〖小调查〗今年6月份你家的固定电话的收费是多少?找出发票,看看费用当中具体分为哪几项?
2.2从古老的代数书说起---一元一次方程的讨论(3)
【教学目标】
1.熟练应用合并(同类项)及移项,解"ax+bx=c"及"ax+b=cx+d"类型的一元一次方程;
2.进一步感受如何找出实际问题中的已知数和未知数,并分析它们之间的数量关系,列出方程;
3.初步体会一元一次方程的应用价值,感受数学文化.
〖练习〗P85.习题9
〖探索1〗
(1)有一列数,按一定的规律排成1,-3,9,-27,81,-243…,如果其中有一个数是x,那么跟在它后面的两个数依次为______,______.如果其中有一个数是y,那么它前面的哪个数是______,后面的那个数是______.
(2)有一列数,按一定的规律排成1,-3,9,-27,81,-243…,其中某三个相邻数的和是567,这三个数各是多少?相信你能自己解决这个问题了!
〖例题学习〗P81.例2
想一想:如果设这三个相邻数中的第二个数为y,怎么列方程?解是多少?
〖探索2〗
(1)“全球通”移动电话的计费方法是:月租费50元/月,本地通话费0.40元/分.一个月内,若通话200分,需交费_________元;若通话x分,需交费__________元.
(2)李老师5月份“全球通”移动电话消费130元,求通话的时间是多少分.
全球通
神州行
月租费
50元/月
0
本地通话费
0.40元/分
0.60元/分
〖探索3〗
“全球通”和“神州行”两种移动电话的收费方式如表:用“全球通”每月收月租费50元/月,此外根据累计通话时间按0.40元/分加收通话费. 用“神州行”,不收月租费, 根据累计通话时间按0.60元/分收通话费.
(1)若一个月内在本地通话100分,按两种计费方式各需交多少元?选择哪一种计费方式比较便宜?通话时间若是300分呢?
(2)若累计通话t分,则用“全球通”要收费__________元; 用“神州行”要收费__________元.
(3)当本地通话时间是多少分时,两种收费方式的收费一样?
(4)你认为在什么条件下选择“神州行”更便宜?
(5)请为你的家长在“全球通”和“神州行”两种移动电话的收费方式中选择一种,并说明理由.
〖补充作业〗
1.国庆节前几天,两家商店的同一种彩电的价格相同. 国庆节两家商店都有降价促销活动.甲商店的这种彩电降价500元,乙商店的这种彩电打9折.若原价是2 000元/台,到哪一家商店买便宜?若原价是20 000元呢?当原价是多少时,降价后的价格仍然相等?
2.某服装商店出售一种优惠购物卡,花200元买这种卡后,凭卡可在这家商店按8折购物(有效期为一年),问当一年内累计消费多少元时,买卡与不买卡要花一样的钱?什么情况下买卡合算?
更多阅读
(西师版小学数学二年级下册 千米的认识教案设计_茶香宜人 二年级美术教案上册
教学内容:西师版数学二年级下册87——88页,例1、例2。教学目标:1、在具体的生活情景中,体验千米的含义,建立千米的长度观念,知道1000米=1千米。2、 培养学生的
人教版新课标五年级下册数学全册教案目录 人教版五年级语文目录
第一单元图形的变换 4课时第二单元因数和倍数 4课时第三单元长方体和正方体 7课时第四单元 分数的意义和性质 18课时第五单元 分数的加法和减法 8课时第六单元统计 4课时第七单元数学广角逻辑推理 2课时第八单元总复习 5课时综合应
初一的孩子如何学好数学 孩子上初一数学不太好
教初中的老师们都常半开玩笑地说这样一句话:“初一是基础,初二是关键,要不然初三就完蛋!”初中的数学知识也不例外,初中数学是一个完整的体系。其中,初中二年级的难点最多,初中三年级的考点最多,而初一年级的数学知识点虽然很多,但相对而言都
青岛版小学数学一年级上册教案(一 青岛版一年级数学教案
第一单元备课第一课时课题:海底世界——数数内容:一年级数学上册 第2~3页教学目标:1、结合情境图,会比较物体的轻重、远近、粗细、宽窄。2、在教师引导下学会与同伴交流,形成合作意识,感受数学与日常生活的密切联系,体验学习数学的乐趣。教
人教版三年级数学下册全册教案 三年上册数学教案
人教版新课标 三年级下册教案三年级《数学》下册教案第一单元 位置与方向(7课时)一、教学内容学生在日常生活中对东、南、西、北等方向的知识已经积累了一些感性的经验,并通过第一学年的学习,已经会用上、下、左、右、前、后描述物体的