电炉炼钢工艺 转炉炼钢

【本章学习要点】本章学习电炉炼钢的配料计算,装料方法及操作,电炉熔化期、氧化期、还原期的任务及其操作,出钢操作等。

电炉炼钢,主要是指电弧炉炼钢,是目前国内外生产特殊钢的主要方法。目前,世界上90%以上的电炉钢是电弧炉生产的,还有少量电炉钢是由感应炉、电渣炉等生产的。通常所说的电弧炉,是指碱性电弧炉。

电弧炉主要是利用电极与炉料之间放电产生电弧发出的热量来炼钢。其优点是:(1)热效率高,废气带走的热量相对较少,其热效率可达65%以上。

(2)温度高,电弧区温度高达3000℃以上,可以快速熔化各种炉料。

电炉炼钢工艺 转炉炼钢
(3)温度容易调整和控制,可以满足冶炼不同钢种的要求。

(4)炉内气氛可以控制,可去磷、硫,还可脱氧。

(5)设备简单,占地少,投资省。

第一节 冶炼方法的分类

根据炉料的入炉状态分,有热装和冷装两种。热装没有熔化期,冶炼时间短,生产率高,但需转炉或其他形式的混铁炉配合;冷装主要使用固体钢铁料或海绵铁等。根据冶炼过程中的造渣次数分,有单渣法和双渣法。根据冶炼过程中用氧与不用氧来分,有氧化法和不氧化法。氧化法多采用双渣冶炼,但也有采用单渣冶炼的,如电炉钢的快速冶炼,而不氧化法均采用单渣冶炼。此外,还有返回吹氧法。根据氧化期供氧方式的不同,有矿石氧化法、氧气氧化法和矿、氧综合氧化法及氩氧混吹法。

冶炼方法的确定主要取决于炉料的组成以及对成品钢的质量要求,下面我们扼要介绍几种冶炼方法:

(1)氧化法。氧化法冶炼的特点是有氧化期,在冶炼过程中采用氧化剂用来氧化钢液中的Si、Mn、P等超规格的元素及其他杂质。因此,该法虽是采用粗料却能冶炼出高级优质钢,所以应用极为广泛。缺点是冶炼时间长,易氧化元素烧损大。

(2)不氧化法。不氧化法冶炼的特点是没有氧化期,一般全用精料,如本钢种或类似本钢种返回废钢以及软钢等,要求磷及其他杂质含量越低越好,配入的合金元素含量应进入或接近于成品钢规格的中限或下限。不氧化法冶炼可回收大量贵重合金元素和缩短冶炼时间。在缺少本钢种或类似本钢种返回废钢时,炉料中可配入铁合金,这种冶炼方法又叫做装入法,用“入”字表示,多用于冶炼高合金钢等钢种上。

不氧化法冶炼如果不采取其他有效措施相配合,则成品钢中的氢、氮含量容易偏高。为了消除这种缺点,从而出现了返回吹氧法。

(3)返回吹氧法。返回吹氧法简称返吹法,用“返”字表示。该法主要使用返回废钢并在冶炼过程中用氧气进行稍许的氧化沸腾,既可有利于回收贵重的合金元素,又能降低钢中氢、氮及其他杂质的含量。因此,该法多用于冶炼铬镍钨或铬镍不锈钢等钢种。

(4)氩氧混吹法。炉料全熔后,按比例将混合好的氩、氧气体从炉门或从炉底吹入,即相当于一台电炉又带一台AOD精炼炉。该法主要用于不锈钢的冶炼上,特点是铬的回收率高,成本低,操作灵活简便,且钢的质量好。

第二节配 料

配料的首要任务是保证冶炼的顺利进行。科学的配料既要准确,又要合理地使用钢铁料,同时还要确保缩短冶炼时间、节约合金材料并降低金属及其他辅助材料的消耗。

一、对配料的基本要求

1.准确配料

一般是根据冶炼的钢种、设备条件、现有的原材料和不同的冶炼方法进行配料。配料的准确性包括炉料重量及配料成分两个方面。配料重量不准,容易导致冶炼过程化学成分控制不当或造成钢锭缺支短尺废品,也可能出现过量的注余增加消耗。炉料化学成分配得不准,会给冶炼操作带来极大的困难,严重时将使冶炼无法进行。以氧化法冶炼为例,如配碳量过高,会增加矿石用量或延长用氧时间;配碳量过低,熔清后势必进行增碳;配入不氧化元素的含量如果高于冶炼钢种的规格,需加入其他金属料撤掉多余的含量或进行改钢处理,既延长了冶炼时间,降低了炉衬的使用寿命,增加了各种原材料的消耗,又影响钢的质量,如果配得过高而又无其他钢种可更改时,只有终止冶炼。为了杜绝以上情况的发生,配料前掌握有关钢铁料及铁合金的化学成分是十分必要的。

实际上,影响配料准确性的因素较多,除与计划、计算及计量有关外,还与收得率、炉体情况、钢铁料及铁合金的科学管理、装料工和炼钢工的操作水平等有关。

2.钢铁料的使用原则

钢铁料的使用原则主要应考虑冶炼方法、装料方法、钢种的化学成分以及产品对质量的要求等。根据冶炼方法的不同特点使用钢铁料,钢铁料的化学成分必须符合冶炼钢种的需要。氧化法有较好的脱磷、去气、除夹杂的能力,应多使用普通的粗料;返吹法和不氧化法因脱磷、去气、除夹杂能力不强,但能回收贵重的合金元素,所以应尽量使用优质的返回精料。由于对轴承钢、曲轴钢以及高标准的结构钢等的质量与使用性能要求较高,无论采用何种方法冶炼,最好多用一些精料。

此外,在配料时,还应预先掌握钢铁料的块度和单位体积重量。一般炉料中应配入大块料30%~40%、中块料40%~50%、小块料或轻薄铁15%~25%。当然,料源不好或采用炉外精炼时,轻薄杂铁也可多配。人工装料时,钢铁料的块度及重量必须与炉门的尺寸和人力相适应,轻薄料也不宜过多,以免延长装料时间。炉顶机械装料时,由于采用机械设备且能充分利用熔炼室空间,可使用较大的重料及较多的轻薄料。

表l2-1常见钢种的密度系数

二、配料计算公式

1.炉料成分的配定原则

配料过程中,炉料化学成分的配定主要考虑钢种规格成分、冶炼方法、元素特性及工艺的具体要求等。具体为:

(1)碳的配定。炉料中碳的配定主要考虑钢种规格成分、熔化期碳的烧损及氧化期的脱碳量,还应考虑还原期补加合金和造渣制度对钢液的增碳。熔化期碳元素的烧损与助熔方式有关,可根据实际生产的具体条件,总结固有规律,一般波动在0.60%左右。氧化期的脱碳量应根据工艺的具体要求而定,对于新炉时的第一炉,脱碳量应大于0.40%。不氧化法碳的配定应保证全熔碳位于钢种规格要求的下限附近。

(2)硅的配定。在一般情况下,氧化法冶炼钢铁料的硅主要是由生铁和废钢带入,全熔后的硅不应大于0.30%,以免延缓熔池的沸腾时间。返吹法冶炼为了提高合金元素的收得率,根据工艺要求可配入硅废钢或硅铁,但也不宜超过1.0%以上,对于特殊情况也可不配。

(3)锰的配定。用氧化法冶炼的钢种,如锰的规格含量较高,配料时一般不予以考虑;如锰的规格含量较低,配料时应严格控制,尽量避免炼钢工进行脱锰操作。对于一些用途重要的钢种,为了使钢中的非金属夹杂物能够充分上浮,熔清后钢液中的锰含量不应低于0.20%,但也不宜过高,以免影响熔池的沸腾及脱磷。由于不氧化法或返吹法冶炼脱锰操作困难,因此配锰量不得超过钢种规格的中限。高速钢中锰影响钢的晶粒度,配入量应越低越好。

(4)铬的配定。用氧化法冶炼的钢种,钢中的铬含量应尽可能的低。冶炼高铬钢时,配铬量不氧化法按出钢量的中下限控制,返吹法则低于下限。

(5)镍、钼元素的配定。钢中镍、钼含量较高时,镍、钼含量按钢种规格的中下限配入,并同炉料一起装炉。冶炼无镍钢时,钢铁料中的镍含量应低于该钢种规定的残余成分。高速钢中的镍对硬度有害无利,因此要求残余含量越低越好。

(6)钨的配定。钨是弱还原剂,在钢的冶炼过程中,因用氧方式的不同而有不同的损失。矿石法冶炼,任何钢种均不人为配钨,且要求残余钨越低越好。不氧化法和返吹法冶炼时,应按钢种规格含量的中下限配入,并同炉料一起装炉。许多钨钢中的钼在成分上可代替部分钨,配料过程中应严加注意。

(7)刷锅钢种炉料成分的配定原则。在电炉炼钢车间,在冶炼含Cr、Ni、M0、W或Mn 等高合金钢结束后,接着需冶炼l~2炉含同种元素含量相应较低的合金钢,对上一炉使用的炉衬和钢包进行清洗,这样的钢种被称为刷锅钢种。刷锅钢种如采用返吹法冶炼,被刷元素的含量应低于该钢种规格下限的0.20%~0.50%;如用氧化法冶炼,被刷元素的含量还要低一些。另外,出钢温度越高的钢种,被刷元素的含量应配得越低。

(8)磷、硫的配定。除磷、硫钢外,一般钢中的磷、硫含量均是配得越低越好,但顾及钢铁料的实际情况,在配料过程中,磷、硫含量的配定小于工艺或规程要求所允许的值即可。

(9)铝、钛的配定。在电炉钢冶炼中,除镍基合金外,铝、钛元素的烧损均较大,因此无论采用何种方法冶炼,一般都不人为配入。

(10)铜的配定。在钢的冶炼过程中,铜无法去除,且钢中的铜在氧化气氛中加热时存在着选择性的氧化,影响钢的热加工质量,因此一般钢中的铜含量应配得越低越好,而铜钢中的铜多随用随加。

2.配料计算公式

出钢量

出钢量=产量+汤道量+中注管钢量+注余量

产量=标准钢锭(钢坯)单重×支数×相对密度系数

汤道量=标准汤道单重×根数×相对密度系数

中注管钢量=标准中注管单重×根数×相对密度系数

注余量是浇注帽口充填后的剩余钢水量,一般为出钢量的0.5%~l.5%。对于容量小、浇注盘数多、生产小锭时,取上限值;反之取下限值。

配料过程中,不可不考虑钢的相对密度系数。

装入量

炉料综合收得率是根据炉料中杂质和元素烧损的总量而确定的,烧损越大,配比越高,综合收得率越低。

炉料综合收得率=∑各种钢铁料配料比×各种钢铁料收得率+∑各种铁合金加入比例×各种铁合金收得率

钢铁料的收得率一般分为三级。

一级钢铁料的收得率按98%考虑,主要包括返回废钢、软钢、平钢、洗炉钢、锻头、生铁以及中间合余料等,这级钢铁料表面无锈或少锈。

二级钢铁料的收得率按94%考虑,主要包括低质钢、铁路建筑废器材、弹簧钢、车轮等。

三级钢铁料的收得率波动较大,一般按85%~90%考虑,主要包括轻薄杂铁、链板、渣钢铁等,这级钢铁料表面锈蚀严重,灰尘杂质较多。

对于新炉衬(第一炉),因镁质耐火材料吸附铁的能力较强,钢铁料的收得率更低,一般还需多配装入量的l%左右。

配料量

配料量=装入量—铁合金总补加量—矿石进铁量

矿石进铁量=矿石加入量×矿石含铁量×铁的收得率

矿石的加入量一般按出钢量的4%算,如果铁合金的总补加量较大,需在出钢量中扣除铁合金的总补加量,然后再计算矿石进铁量。矿石中的铁含量约为50%~60%,铁的收得率按80%考虑,非氧化法冶炼因不用矿石,故无此项。

各种材料配料量

各种材料配料量=配料量×各种材料配料比

三、配料计算举例

例1用矿石氧化法冶炼38CrMoAl钢,浇注一盘3.2t钢锭6支,每根汤道重20kg,中注管钢重l20kg,注余重l50kg,其他已知条件如下:

炉中残余锰量为0.10%,残余铬量为0.15%,残余钼量为0.01%。

控制规格成分:C0.38%、Mn0.45%、Crl.55%、M00.20%、Al0.90%。

铬铁含铬量为65%,收得率为96%;锰铁含锰量为60%,收得率为98%;钼铁含钼量为70%,收得率为98%;铝锭含铝量为98%,收得率为75%。

C生为4.00%,C返为0.30%,C杂为0.10%,炉料综合收得率为96%,38CrMoAl的相对密度系数为0.9872,矿石的铁含量为60%。当配碳量为0.80%时,求配料量和配料组成?

解:(1)出钢量=(3200×6+20×6+120+150) ×0.9872

=19339.25(kg)

(2) (kg)

(3)配料量:

(kg)

(kg)

(kg)

(kg)

铁合金总补加量=115.11+433.89+53.56+236.81

=839.37(kg)

矿石进铁量=(19339.25-839.37)×4%×60%×80%

=355.20(kg).

配料量=20145.O5=839.37—355.20

=18950.48(kg)

(4)配料组成:

令杂铁配比为20%,则:

杂铁配入量=l8950.48×20%=3790.10(kg)

=2765.5(kg)

返回废钢配入量=l8950.48-3790.10-2765.75

=12394.63(kg)

第三节 装料方法及操作

装料操作是电炉冶炼过程中重要的一环,它对炉料的熔化、合金元素的烧损以及炉衬的使用寿命等都有很大的影响。

一、装料方法

电炉炼钢最常见的是冷装料,而冷装按钢铁料的入炉方式不同可分为人工装料和机械装料;机械装料因采用设备不同又分为料槽、料斗、料筐装料等多种。目前,广泛采用的还是料筐顶装料。其装料过程是:将炉料按一定要求装在用铁链销住底部的料筐中。装料时,先抬起炉盖,并将其旋转到炉子的后侧或将炉体开出;然后再用天车将料筐从炉顶吊入炉内,而后拉开销子卸料入炉。

人工装料多用于公称容量小于3t的电炉,缺点是装料时间长,生产率低,热量损失大,电能消耗高,劳动强度大且炉料的块度和单重受炉门尺寸及人的体力限制。

料槽或料斗装料虽能减轻劳动强度,能弥补人工装料的一些缺点,但装料时间仍较长,且易剐碰炉门。

料筐顶装料是目前最理想的装料方法,炉料入炉速度快,只需3~5min就可完成,热量损失小,节约电能,能提高炉衬的使用寿命,还能充分利用熔炼室的空间。另外,料筐中的料可在原料跨间或贮料场上提前装好,时间充裕、布料合理,装入炉内的炉料仍能保持它在料筐中的布料位置,如炉料质量好,一次即可完成装料。

二、对装料的要求

为了缩短时间,保证合金元素的收得率,降低电耗和提高炉衬的使用寿命,装料时要求做到:准确无误、快速入炉、装得致密、布料合理。操作时应注意以下几点:

(1)防止错装。首先是原料工段装料时,要严格按配料单进行装料,严禁装错炉料;其次是炉前吊筐时,要认真检查随料筐单的炉号、冶炼钢种及冶炼方法等与炉前的生产计划单是否相符,防止吊错料筐。

(2)快速装料。刚出完钢时,炉膛温度高达1500℃以上,但此时散热很快,几分钟内便可降到800℃以下。因此应预先做好装料前的准备工作,进行必要的补炉之后快速将炉料装入炉内,以便充分利用炉内的余热,这对于加速炉料熔化、降低电耗等有很大意义。

(3)合理布料。合理布料包括以下两方面的含义:

首先,各种炉料的搭配要合理。装入炉内的炉料要足够密实,以保证一次装完;同时,增加炉料的导电性,以加速熔化。为此,必须大、中、小料合理搭配。一般料块重量小于lOkg的为小料,l0~25kg的为中料,大于50kg而小于炉料总重五十分之一的为大料。根据生产经验,合理的配比是小料占l5%~20%,中料占40%~50%,大料占40%。

其次,各种炉料的分布要合理。根据电炉内温度分布的特点,各种炉料在炉内亦即筐内的合理位置是:底部装一些小料,用量为小料总量的一半,以缓冲装料时对炉底的冲击,同时有利于尽早在炉底形成熔池;然后在料筐的下部中心装全部大料,此处温度高,有利于大料的熔化,同时还可防止电极在炉底尚未积存足够深的钢液前降至炉底而烧坏炉衬;在大料之间填充小料,以保证炉料密实;中型炉料装在大料的上面及四周;最上面放上剩余的小料,以便送电后电极能很快“穿井”,埋弧于炉料之中,减轻电弧对炉盖的热辐射。如果炉料中配有生铁,应装在大料的上面或电极下面,以便利用它的渗碳作用降低大料的熔点,加速其熔化。若炉料中配有合金,熔点高的钨铁、钼铁等应装在电弧周围的高温区,但不能在电弧的正下方;高温下易挥发的铁合金如锰铁、镍板等应装在高温区以外,即靠近炉坡处,以减少其挥发损失;容易增碳的铬铁合金也不要直接放在电极下面。

(4)保护炉衬。装料时,还应尽量减轻炉料对炉衬的损害。为此,装料前,在炉底上先铺一层为炉料重量l.5%~2.0%的石灰,以缓解炉料的冲击;同时,炉底铺石灰还可以提前造渣,有利于早期去磷、加速升温和钢液的吸气等。卸料时,料筐的底部与炉底的距离在满足操作的条件下尽量小些,一般为200~300mm左右。

第四节炉料入炉与送电

一、炉料入炉

料筐顶装料要有专人指挥,抽炉或旋转炉盖时,炉盖要完全抬起,电极要升到顶点且下端脱离炉膛、以防剐坏炉盖或电极,同时又要求电极下端不许超出炉盖的水冷圈或绝缘圈,避免摇晃摆动时将电极折断而滚落到它处砸坏设备或砸伤人。炉膛裸露后,应迅速将料筐吊入炉内的中心位置,不得过高、过偏与过低。过高容易砸坏炉底,且吊车震动大;过偏将使炉料在炉中布局偏倚,抬料筐时也容易带剐炉壁;过低易粘坏料筐的链板。

采用留钢留渣操作时,装料时应多垫些杂铁,并允许料筐抬得略高些。对于多次装料,每次均要切电,因炉内存有大量的钢液,料筐应抬得再高些,这样既可避免粘坏料筐,又可减少火焰与钢液的任意喷射与飞溅,同时还要防止爆炸,潮湿的炉料严禁装入多次装料的料筐中。

炉料入炉后,对于过高的炉料应压平或吊出,以免影响抽炉或炉盖的旋转与扣合。

二、送电

炉料入炉后并在送电前,电炉炼钢工和设备维护人员应对炉盖、电极、水冷系统、机械传动系统、电气设备等进行检查,如发现故障要及时处理,以免在冶炼过程中造成停工;还应检查炉料与炉门或水冷系统是否接触,如有接触要立即排除,以免送电后被击穿。

如电极不够长时,最好在送电前更换,以利于一次穿井成功。在冶炼低碳高合金钢时应注意电极的接尾或接头,如发现不牢固或有毛刺要打掉,避免冶炼过程中增碳。新换电极下端应无泥土或其他绝缘物质,以免影响起弧。当完成上述工作并确认无误后,方可正常送电转入熔化期。

第五节 熔化期及其操作

熔化期的主要任务是在保证炉体寿命的前提下,以最少的电耗将固体炉料迅速熔化为均匀的液体。在这同时,炉中还伴随着发生一些物化反应,如去除钢液中的大部分磷和其他杂质以及减少或限制钢液的吸气与元素的挥发等。此外,有目的的升高熔池温度,为下一阶段冶炼的顺利进行创造条件,也是熔化期的另一重要任务。

传统的电炉炼钢熔化期约占全炉冶炼时间的一半,电能消耗占总电耗的50%~60%。因此,快速化料,缩短冶炼时间,对改善电炉炼钢的技术经济指标具有很大的实际意义,这也是电炉炼钢工作者长期研究的又一课题。

一、炉料的熔化过程

送电开始后,就是熔化期的开始,炉料的熔化过程大体上分为如图12—1所示的四个阶段。

图12─1炉料熔化过程示意图

a-起弧阶段;b-穿井阶段;c-电极回升阶段;d-低温区炉料熔化阶段

第一阶段:起弧阶段。送电后,电极下降,当电极端部距炉料有一定的距离时,由于强大电流的作用,中间的空气被电离成离子,并放出大量的电子而形成导电的电弧,随之产生大量的光和热。起弧阶段的时间较短,约为3~5min,但常出现瞬时短路电流,所以电流一般不稳定并造成了对电网的冲击,从而产生了灯光闪烁或电视图像干扰等现象。

第二阶段:穿井阶段。起弧后,在电弧的作用下,电极下的炉料首先熔化,随着炉料的熔化,电极逐渐下降并到达它的最低位置,这就是穿井阶段。一般说来,极心圆较大的电炉往往在炉料中央部位,电极把炉料穿成比电极直径大30%~40%的三口小井,而极心圆较小的电炉三相电极间的炉料几乎同时熔化,一开始便容易形成一口大井。在穿井阶段,电极下熔化的金属液滴顺着料块间隙向下流动,开始时炉温较低,液滴边流动边凝结在冷料上,当炉温升高后,熔化的液滴便落在炉底上积存下来形成熔池并逐渐扩大。

第三阶段:电极回升阶段。这个阶段主要是熔化电极周围的炉料,并逐渐向外扩大。随着熔化继续的进行,中央部分的炉料跟着熔化,三口小井汇合成一口大井,熔池面不断扩大上升,电极也相应向上抬起,这就是电极回升阶段。在电极回升过程中,周围炉料被熔化。当炉内只剩下炉坡、渣线和其他低温区附近的炉料时,该阶段即告结束。

第四阶段:熔化低温区炉料阶段。三相电弧近似于点热源,各相的热辐射不均匀,所以炉内的温度分布也不均匀。一般情况,在电极下边和靠2#电极热点区的炉料熔化较快,而炉门、出钢口两侧及靠l#炉壁处低温区的炉料熔化较慢,第四阶段主要是熔化这些部位的炉料。在此过程中,电极虽然也继续稍有回升,但不明显。

二、影响炉料熔化的主要因素

电炉炼钢的能源主要是把电能转换成热能,目前发展趋势之一是加大电炉输入功率,从而有利于炉料的熔化,因此一些高功率、超高功率电炉相继投入生产;其次是利用外界辅助热源,如炉料预热、氧气及氧—燃烧嘴等助熔。据资料介绍,废钢铁料入炉前的预热温度为500℃时,可节省电能l/4,而温度为600~700℃时,可节省电能l/3,如果温度达到900℃,只需冷装料时的l/2左右的电能。这就意味着,变压器输入功率不变,熔化期将按相应的比例缩短。此外,热的炉料入炉还可增加电弧的稳定性和提前吹氧助熔,也促使熔化期的缩短。为了减少电能消耗和加速废钢铁料的熔化,在炉内除及时合理地吹氧助熔外,就是利用氧—燃烧嘴加热。氧—燃烧嘴是用氧气助燃,燃烧天然气或轻油,也有的使用煤粉,一般多用于炉内低温区的死角部位或炉温不高的熔化开始阶段。

熔化期的长短不仅与热源有直接关系,而且还取决于电力使用制度、装料方法、布料情况、炉料的化学成分、冶炼工艺、造渣制度及炉体的设计参数等。变压器的有用功率越大,炉子的热损失越小,熔化期就越短。在熔化初期,由于冷料能够吸收大量的热量,因此在穿井和电极回升阶段,使用大电流和最高级电压是有利的。当炉中塌铁后,弧光不能被炉料包围,这时应更换2#电压较为合适(对备有4~6个常用的次级电压的普通功率变压器而言),因2#电压的弧光较l#电压的短,短的弧光容易被熔渣包围,这样就减少了热辐射造成的热耗,同时也有利于熔池内的热传导,从而缩短了炉料的熔化时间。快速装料能减少热损失,充分利用炉中的余热来加热炉料。如果等料、人工装料或因设备坏等原因不能及时装料,势必延长熔化时间。合理的布料也是缩短熔化期的有效措施之一。如炉料装得疏松或在上部装入大块难熔的低碳废钢等,在熔化时炉内容易形成料桥,极易延长熔化时间,如再出现塌铁而把电极打断,更拖延了熔化时间。熔化速度也取决于炉料的化学成分。碳含量为0.20%碳素钢的电阻是铜的电阻的6倍,而碳含量为0.90%碳素钢的电阻是铜的l4倍;炉料可看成是电流的二次线路,根据焦耳定律:

Q=I2Rt

炉料的电阻越大,电流通过时所产生的热量越多。更何况高碳钢的熔点比低碳钢的熔点低,所以高碳料比低碳料熔化得快。另外,炉料中含Si、Al、P等易氧化元素能与氧发生放热反应,反应热可看成是炉料熔化的辅助热源,因此炉料中含有易氧化元素的含量越高越有利于炉料的熔化。金属炉料的合理扩装也可缩短炉料熔化时间。早期造渣有助于炉料的熔化。早期造渣不仅可以防止钢液的吸气,同时也能减少热量的散失,如果采用泡沫渣埋弧操作,不仅可以减轻弧光对炉壁的热辐射,而且更有利于熔池的加热与升温。采用留钢留渣操作,在装料后就可吹氧助熔,也可使熔化期明显缩短。炉体的设计参数对炉料的熔化也有直接的影响。当炉膛的直径与极心圆直径之比较大时,炉料熔化得较慢;如炉膛的直径与极心圆直径之比较小时,炉料熔化得就快。对于熔池较深,炉膛直径略小的炉体,因散热面小,电极所走的行程长,炉料的熔化速度也是比较快的。

三、熔化期的物化反应

炉料熔化的同时,熔池中也发生各种各样的物化反应,主要有元素的挥发和氧化、钢液的吸气、热量的传递与散失以及夹杂物的上浮等。

1.元素的挥发

炉料熔化的同时,伴随着元素的部分挥发。挥发有直接挥发和间接挥发两种形式。直接挥发是因温度超过元素的沸点而产生的。电弧的温度高达4000~6000℃,而最难熔元素W的沸点也仅为5900℃,至于低沸点的Zn、Pb等就更容易挥发了。间接挥发是通过元素的氧化物进行的,即先形成氧化物,然后氧化物在高温下挥发逸出。一般说来,多数金属氧化物的沸点低于该金属的沸点,如M0的沸点为4800℃,而M003。的沸点仅为ll00℃,因此许多金属氧化物的挥发往往先于该元素的直接挥发。熔化期从炉门或电极孔逸出的烟尘中含有许多金属氧化物,其中最多的还是Fe203,这是因为铁在炉料中占的比例最大,液态铁的蒸气压也较大,所以熔化期逸出的烟尘多为棕红色。

2.元素的氧化

炉料熔化时,除产生元素的挥发外,还存在着元素的氧化。这是因炉中存在着氧的来源:一是炉料的表面铁锈;二是炉气;三是为了脱磷而加入的矿石或为了助熔而引入的氧等。在炉料熔化过程中,元素氧化损失量与元素的特性、含量、冶炼方法、炉料表面质量及吹氧强度(压力、流量、时间)等因素有关。Fe、C、Mn的氧化损失量在氧化法和返吹法中基本相似。在一般情况下,Al、Ti、Si元素在氧化法中几乎全部氧化掉,P只能大部分氧化,但这些元素在返吹法中,因不使用矿石助熔,氧化损失略少些,而在不氧化法中为最少。在冶炼高合金钢时,如炉料的配Si量大于1.0%,Si的氧化损失量约为50%~70%。铁的氧化损失通常为2%~6%。废钢质量越差,熔化时间越长,吹氧强度越大,铁的氧化损失也越大。碳的氧化损失量一般为0.60%,但不用氧时碳的损失不太大。而用氧时,碳的变化与钢液中的碳含量、吹氧强度有关。当炉料中的配碳量小于0.30%时,碳的氧化损失不大,并可为电极增碳所弥补;配碳大于0.30%时,碳的氧化损失要多些。吹氧助熔的氧气压力越大、流量越多、吹氧时间越长,碳的损失也越多。碳的氧化损失还随炉料中硅含量的增高而降低,这是因为硅同氧的亲和力在1530℃以下时大于碳的缘故。炉料熔化过程中,有时因塌铁而引起熔池沸腾,也会使碳的氧化损失增加,这主要是由于熔池中的金属液无熔渣覆盖,液面富集大量的Fe0与碳反应的结果。

3.钢液的吸气

在一般情况下,气体在钢液中的溶解度随温度的升高而增加,被高温电弧分解出的氢和氮会因温度的升高直接或通过渣层溶解于钢液中。在熔化期,钢液具有较好的吸气条件,这是因为除大气外,炉料中还含有一定的水分。而且熔化初期的钢液液滴向下移动时是裸露的,而初期的熔池有时又无熔渣覆盖,液滴直接与炉气接触。为了减少钢液的吸气量,应尽早造好熔化渣。熔化期合理的吹氧助熔也能降低钢中的气体含量。

4.热量的传递与散失

热量的传递与散失属于物理过程。熔化期熔池中主要进行着热传导。炉料除了吸收炉衬的余热外,绝大部分热量是从电弧获取的,在起弧和穿井阶段热量由上向下传递;当熔池有熔渣覆盖后,热量通过熔渣传给钢液,这时的热量仍是由上向下传递,一般说来,熔渣的温度高于钢液的温度。当然,在炉中还有热量的辐射与反射,但不是主要的。关于辅助热源,由于提供的方式不同,传递方向也不同。熔池出现后,初期如无熔渣覆盖或熔渣较少,热量散失严重。为了减少散热,应尽早造好熔化渣。

5.熔化期非金属夹杂物的上浮

熔池出现后,钢液中就存在着内在夹杂和外在夹杂,随着熔池的扩大,这些夹杂物也就有不同程度的上浮,它们是熔化渣的来源之一。实践证明,合理的吹氧助熔和尽早造好熔化渣能促使夹杂充分上浮。吹氧后,由于氧气流的作用,造成熔池局部沸腾,进而有助于夹杂物的碰撞和上浮;理想的熔化渣不仅对脱磷有利,而且还能很好地捕捉、吸附非金属夹杂物。

四、熔化期脱磷操作

熔化期的正确操作,可以把钢中的磷去除50%~70%,剩余的残存磷在氧化期借助于渣钢间的界面反应、自动流渣、补造新渣或采用喷粉脱磷等办法继续去除。因此,一个成熟的电炉炼钢工,应在熔化期紧紧地抓住脱磷操作。

熔化期提前造好熔化渣,并使之具有适当的碱度和较好的流动性,能为前期脱磷创造有利的条件。另外,在条件允许的情况下,除加入助熔矿石外,还可在大半熔时分批加入料重l%的氧化铁皮或矿石粉,或在垫炉底灰的同时装入少量的铁矿石等,从中提高熔化渣的氧化能力;在炉料大半熔或全熔后扒除部分熔化渣,对于高磷炉料或磷规格要求较严的钢种,也可全部扒除,然后重造新渣,更是强化脱磷的行之有效的好办法,此时去磷效率可达50%~70%,而钢液中的剩余磷移到氧化初期去继续处理。

五、 熔化期操作

送电后应紧闭炉门,堵好出钢口,扣严炉盖与炉壁的接合处及加料孔等,以防冷空气进入炉内。在起弧阶段结束后,还要调放电极长度,使一次穿井成功并能保证全炉冶炼的需要。备有氧—燃烧嘴装置的炉子也应适时点燃,以使炉料能够同步熔化。需多次装料时,在炉料每次塌铁后,熔炼室能容纳下一料筐中的料时再装入。在炉料熔化过程中,还应适时地进行吹氧、推铁或加矿助熔及早期造渣与脱磷等操作。熔化末期如果发现全熔碳不能满足工艺要求,一般应先进行增碳操作。

熔化渣的渣量一般为料重的2%~3%,电炉功率越高越取上限值。炉料全熔并经搅拌后,取全分析样,然后扒除部分熔化渣,补造新渣。如果认为脱磷困难或发现熔渣中含有大量的Mg0,也可进行全扒渣,重新造渣。当熔池温度升到符合工艺要求时,方可转入下一阶段的冶炼。

第五节 氧化期及其操作

目前,氧化期主要是以控制冶炼温度为主,并以供氧和脱碳为手段,促进熔池激烈沸腾,迅速完成所指定的各项任务。在这同时,也为还原精炼创造有利的条件。

不配备炉外精炼的电炉氧化期的主要任务如下:

(1)继续并最终完成钢液的脱磷任务,使钢中磷降到规程规定的允许含量范围内;

(2)去除钢液中的气体;

(3)去除钢液中的非金属夹杂物;

(4)加热并均匀钢液温度,使之满足工艺要求,一般是达到或高于出钢温度,为钢液的精炼创造条件。

在上述任务完成的同时,钢液中的C、Si、Mn、Cr等元素及其他杂质也发生不同程度的氧化。配备炉外精炼装置的冶炼,电炉只是一个高效率的熔化、脱磷与升温的工具。在这种条件下,钢液中的气体及非金属夹杂物的去除等,均移至炉外进行,而氧化期的任务也就得以减轻。

一、氧化方法

1.矿石氧化法

矿石氧化法属于间接方式的供氧,它主要是利用铁矿石或其他金属化矿石中的氧通过扩散转移来实现钢液中的C、Si、Mn等元素及其他杂质的氧化。

该法的特点是渣中(FeO)浓度高,脱磷效果好。碳和[FeO]的反应是脱碳过程的主要反应,但[FeO]必须通过(FeO)的扩散转移来实现,因此脱碳速度慢,氧化时间长。而铁矿石的分解是吸热反应,会降低熔池温度,所以矿石加入前炉中应具有足够高的冶炼温度。矿石氧化法的钢液中容易带进其他夹杂。因渣中(FeO)含量高,所以熔渣的流动性较好。

2.氧气氧化法

氧气氧化法又称纯氧氧化法。它主要是利用氧气和钢中的C、Si、Mn等元素及其他杂质的直接作用来完成钢液的氧化。除此之外,吹氧后,熔池中还发生下述反应:

O2+2[Fe]=2[FeO]

[FeO]=(FeO)

氧气氧化和矿石氧化存在着本质的不同。氧气氧化时,由于纯氧对钢液的直接作用,各元素氧化的动力学条件好,在供氧强度较高的情况下,更有利于低碳钢或超低碳钢的冶炼。

氧气氧化属于放热反应,进而也有利于提高和均匀熔池温度而减少电能消耗。此外,氧气氧化后,钢液纯洁,带进其他杂质少,且吹氧后,钢液中的氧含量也少,所以又有利于后步钢液的脱氧。但由于(FeO)含量不高,因此脱磷效果差,熔渣的流动性也差。

3.矿、氧综合氧化法

在电炉钢生产过程中,矿石氧化和氧气氧化经常交替穿插或同时并用,这就是所谓的矿、氧综合氧化。其特点是脱碳、升温速度快,既不影响钢液的脱磷,又能显著缩短冶炼时间。但该法如不熟练,难以准确地控制终脱碳。

二、脱碳操作

1.钢液的加矿脱碳

由于矿石的熔化与分解及Fe0的扩散转移均吸热,所以脱碳反应的总过程是吸热。钢液的加矿脱碳开始时必须要有足够高的温度,一般应大于1530℃。为了避免熔池急剧降温,矿石应分批加入,每批的加入量约为钢液重量的1.0%~l.5%,而在前一批矿石反应开始减弱时,再加下一批矿石,间隔时间为5~7min。熔池的均匀激烈沸腾主要通过对矿石的加入速度和保持合适的间隔时间来控制,当熔池温度较高时,矿石的加入速度也不能太快,如在炉门及电极孔冒出猛烈的火焰,则应停止加矿,以避免发生喷溅或跑钢事故。

钢液的加矿脱碳原则上是在高温、薄渣下进行。但考虑到钢液的继续脱磷与升温,温度控制是先慢后快,渣量是先大后薄,且还要有足够的碱度及良好的流动性。粘稠的熔渣不仅不利于脱磷,也不利于(FeO)的扩散及CO气泡的排除,特别是在钢液温度不太高的情况下,熔池容易出现“寂静”的现象,加矿后熔池不沸腾,这时应立即停止加矿,而要用萤石调整熔渣的流动性并升温。

脱碳初期,流动性良好的熔渣在C0气泡的作用下呈泡沫状,并经炉门能自动流出,如不能流出应进行调整,否则以后也难以作到高温、薄渣脱碳。为了加速矿石的熔化与分解,且又不过多地降低熔池温度,当条件允许时,矿石应预先在大于800℃的高温下烘烤4h后使用。矿石的加入量由脱碳量决定,理论计算及经验告诉我们,每氧化C 0.01%,每吨钢液约用矿石lkg。理想的全熔碳应满足工艺的要求,但因装料贻误或助熔不当,有时出现脱碳量过大或不足。脱碳量过大不仅增加了各种原材料的消耗,而且也延长冶炼时间,脱碳量不足需进行增碳,这两种情况对操作不利,应尽量避免。

2.钢液的吹氧脱碳

钢液的吹氧脱碳有碳的直接氧化和碳的间接氧化两种情况。吹入钢液中的氧直接与钢液中的碳发生反应属于碳的直接氧化,而吹入钢液中的氧先与钢液中的铁反应,然后生成的[Fe0]再与钢液中的碳进行反应,属于碳的间接氧化。

吹入钢液中的高压氧气流以大量弥散的气泡形式在钢液中捕捉气泡周围的碳,并在气泡表面进行反应。与此同时,氧气泡周围形成的[FeO]与钢液中的碳作用,反应产物也进入气泡中。而[Fe0]的出现与扩散,又提高了钢液中的氧含量,因此碳的氧化不仅可以在直接吹氧的地方进行,而且也能在熔池中的其他部位进行。吹氧脱碳最大的特点是脱碳速度快,一般约为(0.03~0.05)%/min,而且钢液温度越高、供氧量越大、钢中的碳含量越高,脱碳速度越快。

当钢液中的碳含量降低到0.10%以下时,钢液中所需与碳平衡的氧量将急剧上升,而与钢液中碳平衡所需渣中的氧量也是上升的,这时要保持脱碳速度,就必须增加供氧量,加矿脱碳受到炉温下降的影响,一次不能加得太多,且渣中(FeO)向钢中的扩散转移又是限制环节,而吹氧脱碳不受这种限制,因此当钢液中的碳含量降到0.10%以下时,吹氧脱碳优于加矿脱碳,且两者的速度也有显著的差别。生产实践也证明,在冶炼低碳或超低碳钢时,吹氧容易把碳很快降到很低,而且合金元素的氧化损失比矿石氧化要少,这使得利用返吹法冶炼高合金钢并回收炉料中的贵重合金元素成为可能。在其他条件相同的情况下,吹氧脱碳和加矿脱碳相比,渣中(FeO)的含量少,且钢液中[FeO]的最终含量也少,这样可减轻钢液精炼的脱氧负担。然而脱磷条件却恶化了,所以脱磷任务必须在熔化末期或氧化初期且当钢液的温度处于不太高的情况下就已完成。吹氧脱碳冶炼时间短,可提高产量20%以上,电耗降低l5%~30%,电极消耗降低l5%~30%,总成本约降低6%~8%,且钢的质量也大有改善。吹氧降碳时,最好选用较高的氧压。因为氧压高,氧气流在钢液内可吹入到更深的部位,并能分裂成更多的小气泡,从而提高氧的利用率。此外,氧压高还可减少氧管的消耗,这是由于提高了脱碳速度,缩短了吹氧时间,提高了氧的流速,强化了对管壁端的冷却作用。

3.钢液的矿、氧综合脱碳

矿、氧综合脱碳加大了向熔池供氧的速度,扩大了矿氧反应区,同时也减少了钢中氧向渣中的转移,又由于氧气流的搅动作用,使FeO的扩散速度加快,所以这种脱碳方法能使钢液的脱碳速度成倍的高于单独加矿或吹氧的脱碳速度。在操作过程中,矿石的加入是分批进行,且先多后少,最后全用氧气。吹氧停止后,再进行清洁沸腾或保持锰等操作。

4.碳含量的经验判断

钢液的碳含量主要依靠化学分析、光谱分析及其他仪器来确定。但在实际操作中,为了缩短冶炼时间,电炉炼钢工也常用经验进行准确的判断,方法介绍如下:

(1)根据用氧参数来估计钢中的碳含量。在冶炼过程中,依据吹氧时间、吹氧压力、氧管插入深度、耗氧量或矿石的加入量、钢液温度、全熔碳含量等,先估算lmin或一段时间内的脱碳量,然后再估计钢中的碳含量。因这个办法使用方便,所以应用的时候较多。

(2)根据吹氧时炉内冒出的黄烟多少来估计钢中的碳含量。炉内冒出的黄烟浓、多,说明碳含量高,反之较低。当碳含量小于0.30%时,黄烟相当淡了。这个办法只能大概地估计钢中碳含量,难以作到准确的判断。

(3)根据吹氧时炉门口喷出的火星估计钢中的碳含量。吹氧时炉门口喷出的火星粗密且分叉多则碳高,反之则低。

(4)根据吹氧时电极孔冒出的火焰状况判断钢中的碳含量。常用于返吹法冶炼高合金钢上。一般是碳含量高则火焰长,反之则火焰短。当棕白色的火焰收缩,且熔渣与渣线接触部分有一沸腾圈,这时的碳含量一般小于0.10%。在返吹法冶炼铬镍不锈钢时,当棕白色的火焰收缩并带有紫红色火焰冒出且炉膛中烟气不大,可见到渣面沸腾微弱,这时的碳含量约为0.06%~0.08%;如果熔渣突然变稀,这是过吹的象征,碳含量一般小于0.03%。碳低熔渣变稀,这种现象在冶炼超低碳钢时经常遇到。

(5)根据表面张力的大小进行粗略的判断。当碳含量位于0.30%~0.40%和碳含量小于0.10%时,钢的表面张力较大,取样时,样勺的背面在钢液面上打滑。

(6)根据试样断口的特征判断钢中的碳含量。这种方法是把钢液不经脱氧倒入长方形样模内,凝固后取出放入水中冷却,然后再打断,我们可利用试样断口的结晶大小和气泡形状来估计钢中的碳含量。

(7)根据钢饼表面特征估计钢中的碳含量。这种方法主要用于低碳钢的冶炼上。一般是舀取钢液不经脱氧即轻轻倒在铁板上,然后根据形成钢饼的表面特征来估计碳含量。

(8)根据火花的特征鉴别钢中的碳含量。利用火花的特征鉴别钢中的碳含量应具备砂轮机一台,但该法偏差大,这主要是砂轮打磨出的火花与砂轮机的转数及砂轮的砂粒粗细等有关,在炉前并不常用。

(9)根据碳花的特征判断钢中的碳含量,该法简称碳花观察法。由于该法简便、迅速、准确,因此获得普遍的应用。

未经脱氧的钢液在样勺内冷却时,能够继续进行碳氧反应,当气泡逸出时,表面附有一薄层钢液的液衣,宛如空心钢珠,这就是火星。又因为气泡是连续逸出的,所以迸发出来的火星往往形成火线。如果钢中的游离碳较多,有时在火星的表面上还附有碳粒。当气泡的压力较大而珠壁的强度不足时,迸发出来的火星破裂,进而形成所谓的碳花。然而,CO 气泡压力随钢液碳含量的降低而降低,碳花的数目和大小也依次递减,火星的迸发力量也是由强到弱。有经验的炼钢工可根据火星(碳花)的数量、大小与破裂情况及迸发力量的强弱、火线的断续情况或发出的声音等进行判断,碳含量越低判断得越准确,误差常常只有±0.01%~0.02%,而碳含量越高,碳花越大,分叉越多,跳跃越猛烈,也越缺乏规律性,因此碳含量很高时难以准确的判断。当碳含量超过0.80%以上时,碳花在跳跃破裂过程中还发出吱吱的响声。碳花的具体观察方法有两种:一种是直接观察从勺内迸发出来的火星(碳花)情况;另一种是观察火星(碳花)落地后的破裂情况。一般碳钢的碳含量与碳花特征的关系见表12—2。

表12-2 碳钢的碳含量与碳花特征的关系

碳含量/% 火星或碳花的颜色 火星与碳花的多少等 迸发力量或破裂的情况 备注

0.O5~0.10 棕白色 全是火星构成的火线无花 迸发无力 火线稀疏时有时无

0.1~0.20 白色 火星构成的火线中略有小花 迸发无力 火线稀疏时有时无

0.3~0.40 带红 火星2/3,小花1/3 迸发稍有力 火线细而稍密

0.50~0.60 红色 火线2/3,小花1/3间带2~3朵大花 迸发有力 火线粗而密

0.70~0.80 红色 火线l/3,小花2/3大花3~5

朵 迸发有力,花内分叉,呈

现二次破裂

0.90~1.O0 红色 火星少,小花多,大花7~10朵 迸发有力、很强,花有圈

呈现三次破裂 碳含量大于0.08%以上时,碳花在跳跃破裂过程中有吱的响声

1.1~1.20 红色 大花很多、很乱略有火星 花跳跃频繁有力,花有圈呈现三次破裂

1.30~1.40 红色 大花l/3,紫花2/3 花跳跃短而有力,多次

破裂

1.50~1.80 红色 几乎全是紫花 花跳跃短雨有力,多次破裂

利用碳花的特征判断钢中的碳含量,还应考虑以下一些因素的影响。温度过低,容易低看,而实际碳含量不是那么低;温度过高,容易高看,而实际碳含量又没有那么高。合金钢的碳花与碳钢基本相似,但形状因其他元素的影响而有所不同。与碳含量相同的碳钢比较:当Mn、Cr、V等元素含量较高时,碳花较大、分叉又多,容易估的偏高;当W、Ni、Si、Mo等元素含量较高时,碳花分叉较少,容易估的偏低。除此之外,如钢中的氧含量低于碳氧的平衡值时,碳花较少或无碳花,如经脱氧或真空处理的钢液就是如此。

三、铁、硅、锰、铬等元素的氧化

在脱磷、脱碳反应进行的同时,钢液中其他元素和杂质也发生氧化。这些元素的氧化及氧化程度取决于:与铁比较该元素对氧的亲和力大小、该元素在钢液中的浓度、熔渣组成与该元素氧化物的化学性质(酸性或碱性)及冶炼温度等。除此之外,在实际冶炼中,钢液中各元素的氧化程度还受各元素氧化反应速度的影响,而这速度又与熔渣的物理性质(粘度、表面张力)及熔池的物理状态有关。

铝对氧的亲和力很强,钛次之,钢液经熔化和氧化后,它们几乎全部氧化掉,而Fe、Si、Mn、Cr等元素与铝和钛的情况不一样。下面我们分别进行介绍。

1.铁的氧化

铁与氧的亲和力比其他元素(Cu、Ni、CO除外)小,只要有别的元素存在,它就很难与氧结合,但在铁基钢液中,由于铁的浓度最大,所以它还是首先被氧化。当钢中的C、Si、Mn、P等元素进行氧化反应时,氧的主要来源是FeO,因此铁的氧化能为其他元素的氧化贮存氧,这也说明FeO对氧的传递起着重要作用。

2.硅的氧化

Si与O的亲和力较大,但次于Al和Ti,而强于V、Mn、Cr。因此,钢液中的Si在熔化期将被氧化掉70%,少量的残余Si在氧化初期也能降低到最低限度。硅的氧化反应式如下:

[Si]+2(FeO)=(SiO2)+2[Fe]

[Si]+O2=SiO2(固)

硅的氧化是放热反应,并随着温度的升高氧化程度减弱,且在碱性渣下比在酸性渣下氧化完全。在冶炼高铬不锈钢或返吹其他钢种时,炉料中往往配入一定量的硅,以保证钢液的快速升温及减少铬的烧损。反应生成物SiO2不溶于钢液中,除一部分能上浮到渣中外,还有一部分呈细小颗粒夹杂悬浮于钢液中,SiO2可与其他夹杂物结合生成硅酸盐,如果去除不当而残留在钢中能成为夹杂。

在熔渣中,(SiO2)与(FeO)发生下述反应:

(SiO2)+2(FeO) = (2 FeO?SiO2)

在碱性渣中,(FeO)能被更强的碱性氧化物(CaO)从硅酸铁中置换出来,即:

由于生成的正硅酸钙(2CaO?SiO2)是稳定的化合物,使Si02分解压力变得更低,渣中a(SiO2)变得更小,所以在碱性渣下,硅的氧化较完全。

3.锰的氧化

锰与氧的亲和力比硅小,到了熔化末期锰大约烧损50%左右。如果熔化期渣中(FeO)含量和碱度较低时,烧损可能还要少些。

在氧化期,钢液中的锰继续氧化,锰的氧化反应如下:

锰的氧化也是放热反应,且随着温度的升高氧化程度减弱。当钢液的温度升高到一定程度时,锰的氧化反应趋于平衡。因此,全熔后钢液中的锰含量较高时,可在氧化初期在较低的温度下进行氧化,并采取自动流渣或换渣的方式去除。

通常在电炉钢的实际冶炼过程中,锰含量的变化被看成是钢液温度高低的标志。这是因为熔池温度升高后,由于碳的氧化反应使渣中的(FeO)含量不断降低,溶于熔渣中呈游离状态的(MnO)就要参与碳的氧化反应,这时已趋于平衡的锰的氧化反应被破坏,而转变为锰的还原,反应式如下:

如果氧化末期钢液中的锰含量比前期高或氧化过程中锰元素没有损失,说明氧化沸腾是在高温下进行的。如果氧化末期钢液中的锰含量损失较多,说明氧化沸腾有可能是在较低的温度下进行的。

锰的氧化反应生成物(MnO)在钢液中的溶解度很小,将上浮进入渣中,其中一部分在上浮途中与悬浮在钢液中的细小不易上浮的Si02、Al2O3结合成硅酸锰和铝酸锰即:

这些硅酸锰和铝酸锰属于颗粒大、熔点低并易于上浮的化合物。为了更好地去除钢中夹杂,在冶炼用途重要或碳含量较低的钢种时,在氧化末期建立了保持锰的工艺制度。当熔渣具有足够的碱度时,(CaO)能将(MnO)从硅酸锰或铝酸锰中置换出来而形成比较稳定不易分解的复合化合物,即:

4.铬的氧化

Cr比Fe易氧化,但不如Al、Ti、Si等,铬的氧化反应式如下:

在碱性渣下的氧化,第二个反应是主要的。该反应式也表明了渣中(FeO)能使铬的收得率降低,且当炉料中的铬含量很高时,转入熔渣中的铬损失也多。高铬的熔渣很粘,能影响其他元素氧化反应(如脱磷)的正常进行。因此,为了减少铬的损失及保证冶炼的正常进行,矿石法氧化不宜使用含高铬的炉料。

铬的氧化也能放出大量的热,而铬的氧化损失又与温度有关。除此之外,在高温时还将发生下述反应:

高温下脱碳能抑制铬的氧化损失,这一点对于采用返吹法冶炼低碳高铬钢具有极其特殊的意义。换言之,高温不利于铬的氧化,所以为了降低钢中的铬含量,一般均采用偏低的温度并选用矿石氧化的方式进行。

5.钒的氧化

钒对氧的亲和力较大,当熔池中(FeO)的含量很高时,它几乎全部氧化。钒的氧化也是放热反应,因此偏低的氧化温度可使钒的氧化损失增加。反应式如下:

温度升高后,由于碳的激烈氧化夺取了大量的(FeO),从而也能抑制钒的氧化。钒既易氧化,产物(V2O3)、(V2O5)也极易还原。如果炉中剩留的含钒氧化渣较多,或炉壁和炉盖处悬挂的含钒氧化渣较多,在电炉炼钢的还原气氛下,将有一部分的钒被还原回钢中。这种情况在利用含钒炉料冶炼钒钢时尤要注意,以避免钒的成分超出规格。

6.钨的氧化

钨是一种弱还原剂,它比铁容易氧化。在电炉钢的氧化过程中,当(FeO)的含量很高时,钨的氧化烧损也很严重。反应式如下:

其中,WO3为酸性氧化物,除有一部分能被还原外,当渣中碱度达到足够高时,又能发生下述反应:

因此,相对比较而言,酸性熔炼钨几乎不受损失,而碱性熔炼损失较大。此外(WO3)的沸点约为1850℃,所以还有一部分的(WO3)可能在电弧的光柱下升华而使钨挥发。不难得出,矿石法氧化能使钢液中的钨蒙受损失,且碱性熔炼损失更大。因钨铁的生产比较困难,价格较高,所以矿石法冶炼不应使用含钨的炉料。然而钨的熔点高,密度大,易沉积炉底,如果[FeO]的含量不高时,钨的氧化损失也是有限的,这样就为我们利用装入法或返吹法冶炼高钨钢提供了可能。

7.钼、镍、钴、铜等元素的氧化

钼对氧的亲和力几乎与铁一样,在电炉钢的冶炼过程中,如含量不高,它的氧化损失很微小,一般可忽略不计。但在冶炼高钼钢(Mo>4%以上)时,氧化损失必须予以考虑,这是因为钼的氧化与氧化程度是随钢中钼含量的增加而增加,即钼的氧化损失与钼在钢液中的浓度有关。Ni、CO、Cu对氧的亲和力比铁小很多,在炼钢条件下不会被氧化,但Ni有时也有损失,那是在电弧高温区挥发的结果。通过氧化方式,As、Sb、Sn元素在氧化期一般是很难去除的。

四、冶炼温度制度的制订和钢液的升温

电炉炼钢十分讲究冶炼温度,因为它规定和影响着反应的方向与限度,直接关系到钢的质量、产量及各项技术经济指标。因此,正确掌握冶炼温度历来都是电炉炼钢工操作的一项主要任务。

1.冶炼温度制度的制订

由于温度对电炉炼钢的影响很大,因此它是冶炼工艺中的一个重要的参数。为了确保冶炼的顺利进行,针对具体情况制订合适的冶炼温度制度是十分必要的。温度制度的制订主要应考虑以下诸因素:

(1)掌握钢的熔点与钢液的粘度。大量的科学试验和生产实践证明,只有冶炼温度超过熔点的一定范围时,渣钢间的各种物化反应才能得以充分进行,因此钢的熔点是制订冶炼温度制度的基础。而冶炼过程中钢液的成分是不断变化的,所以在制订冶炼温度制度时,必须依据不同时期的钢液成分,并运用有关的经验式对熔点进行近似计算。不同的钢种在相同的温度下粘度相差较大,如l8CrMnTi和12CrNi3A的熔点均为1510℃,但当温度升高100℃时,l2CrNi3A的粘度变化不大,而18CrMnTi的粘度却降低33%。由于在相同的温度下,钢液的粘度不同,元素的扩散与传质及各种物化反应速度等也不同,因此为了保证冶金过程的顺利进行,在制订冶炼温度制度时就必须考虑钢液粘度的影响。

(2)熟知各种物化反应的温度范围。冶炼温度制度的制订除了要掌握钢的熔点和钢液的粘度外,就是要熟知各种物化反应的温度范围。例如,氧化期的脱磷和脱碳:前期主要是脱磷,温度应中等偏低;后期主要是脱碳,温度应逐渐升高。另外,钢的熔点因碳的氧化而逐渐上升,氧化期的脱碳量一般大于0.30%,对于碳含量小于1.0%的钢液,熔点相应提高20℃以上,因此氧化后期的温度应更高些。电炉炼钢的还原期主要进行脱氧、脱硫反应,其中脱氧是关键,考虑脱氧工艺特点及钢中原始硫含量,冶炼应在较高的温度下进行。但是,钢液还原后,由于大量脱氧剂和合金元素的不断引入,钢的熔点是降低的,因而还原期的冶炼温度又理应是由高逐渐降低的。如ZGMn13的熔点低,流动性较好,但当冶炼温度在1600℃以上时,钢中的锰将与耐火材料中的SiO2发生反应,易使炉衬损坏严重或造成漏炉事故,所以在制订ZGMn13钢冶炼温度制度时,不可不考虑这一特殊反应的温度范围。

(3)了解钢种的特性和易产生的冶金缺陷。不同的钢种有不同的特性,易产生不同的冶金缺陷,对冶炼温度的要求也不一样。一般对于碳含量低、熔点高、粘度大的钢种,确定的冶炼温度要略高一些,而对于含碳或含硅或含锰高、流动性好的钢种应稍低些。对于白点、偏析、层状断口敏感的钢种,确定的冶炼温度要适当低一些,而对于要求检查发纹的钢种要适当高一些。

(4)考虑冶炼过程中的各种生成热和温度降。冶炼温度制度的制订应考虑冶炼过程中的各种生成热。如熔化期的吹氧助熔或C、Si、Mn等元素的氧化,均使熔池的温度升高;还原期许多脱氧元素与氧发生的反应也是放热反应,当用量较多时,如果不考虑,容易出现高温钢并浪费大量的热量。此外,在制订冶炼温度制度时,还应考虑冶炼过程中的各种温度降,如氧化末期的全扒渣降温、造渣材料和各种铁合金从常温加热到熔点,再由固态转变为液态的吸热降温、中间出钢法的降温、出钢过程及包中精炼或采用固体合成渣的降温,镇静与浇注过程的降温等,如果忽视,易使冶炼出现低温钢或后升温。

2.钢液的升温

由于脱磷,熔化末期至氧化前期,钢液的温度多是中等偏低的。但为了保证熔池的激烈沸腾,脱碳反应在高温下进行,矿石的熔化也需要消耗一定是热量,随着碳含量的降低而钢的熔点提高,要求氧化期的钢液必须不断地进行升温。此外,氧化期钢液的升温也为还原期造渣、脱氧、脱硫及合金化等创造了有利条件。

从熔体的加热条件上分析,氧化期钢液的升温比还原期有利,这是因为激烈的碳氧反应引起的沸腾火舌加速了热量的传递,可在短时间内迅速提高钢液温度以及使钢液温度变得更加均匀。而还原期的熔池比较平静,钢液中因合金元素与脱氧剂的引入,粘度增加,不利于分子的热振动或自由电子的穿过。另外,还原性钢液和氧化性钢液及还原渣和氧化渣的热导率不一样。在还原性钢液中,合金元素和杂质的总含量比氧化性钢液中的高,在其他条件相同的情况下,还原性钢液的热导率不如氧化性钢液的高。同理,还原渣的导热能力也不如氧化渣的好。一般说来,静止熔渣的热导率要比沸腾熔渣的热导率低20~40倍。电炉炼钢的弧光热是通过熔渣传给钢液的,尽管还原期引入了大量的合金元素与脱氧剂,钢的熔点虽然下降了,但总的情况仍然是不利于钢液的升温与加热。

钢液在还原后期的升温俗称后升温。由于熔体的导热性能不好,后升温的速度极为缓慢且熔池中温度分布也不均匀,既延长了还原时间,又往往造成脱氧效果差,进而使钢中气体和夹杂物含量增加,也降低炉衬的使用寿命。既不利于操作,又影响钢的质量。因此,在冶炼过程中要求氧化末期钢液的温度要高于或至少应等于出钢温度。

然而,钢液的升温又不能无止境的过高,因过高的冶炼温度不仅浪费大量的原材料与电能,而且侵蚀炉衬严重,对于容量大的电炉炉台,由于热焓高,降温困难,易出现高温钢或影响还原操作及钢的浇注。

五、全扒渣与增碳

1.全扒渣

全扒渣就是将熔融炉渣全部扒除。氧化结束后,熔池即将转入还原期,但为了迅速克服炉内的氧化状态以及防止熔渣中有害杂质的还原,需将氧化渣全部扒除。全扒渣是氧化与还原的分界线。熔化末期为了脱磷或去铬,出钢前为了脱硫或降温或使某些易氧化元素收得率高且又稳定,有时也需要进行全扒渣,我们这里指的是氧化末期的全扒渣。

A.氧化末期的全扒渣条件

氧化期各项任务完成后,钢液需要继续留在炉内进行精炼,这时只有具备下述条件方可进行全扒渣操作:

(1)足够高的扒渣温度。氧化末期钢液温度一般均高于出钢温度20~30℃,至少也应等于出钢温度(稀薄渣下加入大量铁合金的例外),这主要是考虑到扒渣时和扒渣后加入大量的造渣材料与铁合金以及抬电报扒渣等都会降低钢液温度。此外,为了尽快形成稀薄渣和防止还原期后升温及保证脱氧、脱硫等冶金反应的顺利进行,也要求钢液要有足够高的扒渣温度。

(2)合适的化学成分。钢中的碳含量应达到所需要的范围:一般碳素钢应达到规格下限附近;碳素工具钢应达到规格的中下限,合金钢全扒渣的碳含量应加上铁合金带入的碳含量、再加上造渣材料和脱氧工艺的增碳量达到规格下限附近。磷含量在还原期只能增加,不能降低,这是由于全扒渣不彻底或飞扬悬挂在炉壁、炉盖处的渣中磷发生还原所致。另外,加入铁合金中的磷也被带入钢中。因此,氧化末期全扒渣前钢液中的磷含量应越低越好。一般扒渣前对各种规格的磷含量应符合表表l2—3中的规定。对于锰含量,在冶炼含锰低的钢种(如Tl0等钢)时,全扒渣前的锰含量应按表12—4的要求控制。对于用途重要的高级结构钢或碳含量低于0.20%的钢液,在氧化末期应保持锰,并将锰的含量调到0.20%以上。对于含Ni、Mo、W的钢种应将成分调到规格下限或中下限附近,其他残余元素的含量也应符合规格要求。

表l2—3氧化末期全扒渣前钢中磷含量的规定

表12—4氧化末期全扒渣前的锰含量控制

(3)调整好熔渣的流动性。扒渣前要调整好熔渣的流动性。因过稀的熔渣会从耙头两侧溜开,也容易带出钢水;过稠的熔渣操作费力,也不易扒出。两者都延长扒渣时间,且又不易扒净。因此,扒渣前调整好熔渣的流动性也是十分必要的。

B.氧化末期对全扒渣的要求及操作

因为氧化渣中(FeO)和磷含量很高,如果不扒净,还原期脱氧困难,脱氧剂用量增加,脱氧时间延长,同时钢中也回磷,所以氧化末期的全扒渣要求干净彻底,又因为扒渣过程中,钢水裸露,钢液急剧降温且吸气严重,所以又要求扒渣迅速。为此,扒渣前要撬掉炉门残渣并垫好炉门(中小型炉台的除渣一般都通过炉门),提前准备好耙子和渣罐等。

扒渣多用木制或水冷的耙子。扒时应首先带电扒去大部分,然后方可略抬电极进行,以免钢液降温太多。也可根据需要向炉门一侧倾动炉体,以利于熔渣的快速扒除。此外,在装有电磁搅拌的大型炉台上,可利用搅拌作用,把熔渣聚集到炉门中处,使扒渣操作易于进行。

2.增碳

增碳多是脱碳量不足或终脱碳过低所致,它是一种不正常的操作。因为增碳过程易使钢中气体和夹杂含量增加,既浪费原材料,又延长冶炼时间,所以应尽量避免。

常见的增碳方法有四种:

(1)补加生铁增碳。由于该法降低钢液温度且又要求装入量在熔池允许的条件下进行,因此增碳量受到了限制,一般不大于0.05%。

(2)停电下电极增碳,但增加电极消耗,一般不提倡。

(3)扒渣增碳。该法虽然收得率不够准确,但经济方便,因而比较多见。

(4)喷粉增碳。该法操作迅速、简便,且准确而又不降低熔池温度,所以是目前最理想的增碳方法。

增碳应考虑加入铁含量带入的碳量以及还原工艺的增碳量(如电石渣)。常用的增碳剂除生铁外,还有电极粉或焦炭粉等,它们的收得率不仅与增碳剂的质量和增碳数量及增碳方法有关,而且与所炼钢种、冶炼方法、钢液温度和炉龄情况有关.一般电极粉比焦炭粉收得率高;增碳量越多收得率越低;中碳钢比高碳钢和低碳钢的收得率要高;氧化法比不氧化法收得率要高;炉龄中期比炉龄初期和末期要低一些;钢液温度越高收得率越高;喷粉增碳的收得率比扒渣增碳高。

对于扒渣增碳,为了稳定增碳剂的收得率,必须将熔渣扒净,增碳剂加入后要用耙子在钢液面上进行充分地推擀,促进钢液对炭粉的吸收,然后加入造渣材料。扒渣增碳过程中,为了减少吸气和避免增碳剂的回收不准,最好不通电。

六、氧化期操作

1.判断氧化期进行程度的主要标志

对于不配备炉外精炼的电炉炼钢,为了更好地去除钢中的气体和非金属夹杂物,氧化期必须保证熔池要有一定的激烈沸腾时间,因此在脱碳过程中要求要有一定的脱碳量和脱碳速度。从现象上看,脱碳量、脱碳速度、激烈沸腾时间就是判断氧化期进行程度的主要标志。

(1)脱碳量

在电炉钢生产过程中,氧化期的脱碳量是根据所炼钢种和技术条件的要求,冶炼方法和炉料的质量等因素来确定。一般说来,炉料质量越差或对钢的质量要求越严,要求脱碳量要相应高些。

生产实践证明,脱碳量过少,达不到去除钢中一定量气体和夹杂物的目的;而脱碳量过大,对钢的质量并没有明显的改善,相反会延长冶炼时间及加重对炉衬的侵蚀,浪费人力物力,因此脱碳量过大也是没有必要的。一般认为,氧化法冶炼的脱碳量为0.20%~0.40%,返吹法则要求大于0.10%,而小炉台因脱碳速度快,可规定略高一些。

(2)脱碳速度

生产实践证明,脱碳速度过慢,熔池沸腾缓慢,起不到充分去气除夹杂的作用;而脱碳速度过快,在短时间内结束脱碳,必然造成熔池猛烈的沸腾,易使钢液裸露,吸气严重,且对炉衬侵蚀加重,这不仅对去气除夹杂不利,还会造成喷溅、跑钢等事故。所以,电炉炼钢的脱碳要求要有一定的速度。合适的脱碳速度应保证单位时间内钢液的去气量大于吸气量,并能使夹杂物充分排出。一般正常的矿石脱碳速度要求为0.008~0.015%/min,而吹氧脱碳速度要求为0.03~0.05%/min。

(3)激烈沸腾时间

氧化期的脱碳量和脱碳速度往往还不能真实地反映钢液沸腾的好坏,必须再考虑熔池的激烈沸腾时间,只有这样才能全面地表明钢中去气除夹杂及钢液温度的均匀情况等。然而熔池的激烈沸腾时间取决于氧化的开始温度、渣况及供氧速度等,即熔池的激烈沸腾时间与脱碳量和脱碳速度有直接关系。但即使上述因素不完全具备,电炉炼钢工也可通过直接向熔池吹入氩气或CO气体等,保证熔池具有足够的激烈沸腾时间。这里必须指出,向熔池中吹入氩气或CO气体,虽能制造良好的激烈沸腾,但它不能解决钢中杂质的氧化,而许多杂质的氧化是离不开氧的。因此,在氧化期如果不向熔池中供氧,单凭吹氩或吹CO气体,最终也不能获得较为理想的纯净钢液。

在电炉钢生产过程中,氧化期熔池的激烈沸腾时间不应过短或过长,一般约在15~20min就可满足要求。

2.氧化期操作

(1)氧化期操作的原则

氧化期的各项任务主要是通过脱碳来完成。单就脱磷和脱碳来说,两者均要求熔渣具有较强的氧化能力,可是脱磷要求中等偏低的温度、大渣量且流动性良好,而脱碳要求高温、薄渣,所以熔池的温度是逐渐上升的,根据这些特点,我们将氧化期总的操作原则归纳如下:

在氧化顺序上,先磷后碳;在温度控制上,先慢后快;在造渣上,先大渣量去磷,后薄渣脱碳;在供氧上,可先进行矿石或综合氧化,最后以吹氧为主。

(2)氧化期的一般操作

炉料全熔经搅拌后,取样分析C、Mn、S、P、Ni、Cr、Si、Cu,如钢中含有MO、W等元素也要进行分析。然后扒渣并补造新渣,使氧化渣的渣量达到料重的3%~4%。为了加速造渣材料的熔化可用氧气吹拂渣层,流动性不好时要用萤石调整,当温度达到l530℃以上开始用矿石氧化。在氧化过程中,应控制脱碳速度,并掌握熔池的激烈沸腾时间;脱碳量要满足工艺要求,如果不足应选择适当时机进行增碳。在氧化过程中,最好能够做到自动流渣,这样既有利于脱磷,又有利于后期的薄渣降碳。为了掌握脱碳、脱磷情况及准确地知道不氧化元素的成分,在氧化中途还应分析有关的含量。当加完矿或停吹后,熔池进入清洁沸腾,有的还要保持锰,在这同时,根据需要还要调整一些不氧化元素的成分,如Ni、MO等,使之达到规格的中下限,然后再取样分析C、Mn、P等及其他有关元素的成分。当熔池具备扒渣条件时,即可进行全扒渣操作,而后转入还原期。

在氧化过程中,应正确控制熔渣的成分、流动性和渣量,无论是脱磷还是脱碳,都要求熔渣具有较高的氧化能力和良好的流动性。理想的脱磷碱度应保持为2.5~3.0,而脱碳的碱度为2.0左右。在冶炼过程中,有的因炉壁倒塌或炉底大块镁砂上浮,使氧化渣的流动性变坏,这时应及时地扒出。

良好的氧化渣应是泡沫渣,可包围住弧光,从而有利于钢液的升温和保护炉衬,冷却后表面呈油黑色,断口致密而松脱,这表明(FeO)含量较高、碱度合适。氧化末期有时氧化渣发稠,这主要是炉衬粉化的镁砂和大量的非金属夹杂物上浮造成的。冶炼高碳钢时,如熔渣发干,表面粗糙且呈浅棕色,表明(FeO)含量低,氧化性能差,这种现象在返吹法冶炼或纯氧氧化时出现较多。冶炼低碳钢时,如氧化渣表面呈黑亮色,渣又很薄,表明(FeO)含量高,碱度低,这时应补加石灰。

(3)氧化期常见的几种典型操作

氧化期是在确知熔清成分和温度合适的条件下开始的,但有时熔清成分不是那么理想,常见的有碳高、磷高;碳高、磷低;碳低、磷高;碳低、磷低等几种典型情况,现分述如下:

a.碳高、磷高。此时应在氧化初期,利用熔池温度偏低的机会集中力量脱磷,并在脱磷过程中,逐渐升温,为后期脱碳创造条件。具体操作是:全熔扒渣后制造较大的渣量,可吹氧化渣并升温,然后加入矿石粉或氧化铁皮及适量的矿石,以利于脱磷。在这同时,要保证熔渣流动性良好,当温度合适后,再分批加入矿石制造脱碳沸腾,并自动流渣,补充新渣或进行换渣操作,这样很快就能使磷满足扒渣的许可条件。如果全熔换渣后改用喷粉脱磷效果更好。在碳高、磷高的情况下,氧化前期的操作以脱磷为主,后期以脱碳为主。当然,高水平的操作也可两者兼顾,直至全面满足工艺要求为止。

b.碳高、磷低。如果没有满足扒渣的许可条件,这时的操作除采用喷粉脱磷外,还可利用脱碳沸腾,并在脱碳过程中去磷。具体操作是:全熔扒渣后制造较大的渣量,用氧气化渣升温,当温度合适后开始降碳,并适时地加入矿石或氧化铁皮等,使其自动流渣、并补选新渣,这样很快就能将磷降到扒渣许可的条件,最后采用高温、薄渣脱碳直至满足工艺要求为止。

如果已满足扒渣的许可条件,这时的操作主要是制造熔池沸腾和降碳,与此同时升温。具体操作是:全熔扒渣后制造合适的渣量,用氧气快速化渣与升温,当温度合适后,可采用矿氧并用或纯氧脱碳,直至满足工艺要求为止。

c.碳低、磷高。这时应集中力量去磷,然后增碳,当温度上来后,再制造脱碳沸腾直至满足工艺要求为止。

d.碳低、磷低。这时的操作主要是增碳,然后再脱碳激烈沸腾,与此同时快速升温。如果炉料质量较好,即杂质较少,而激烈沸腾时间不够时,也可借助于直接吹入氩气或吹CO气体来弥补熔池的沸腾,以满足工艺要求。

0

?

-

第七节 还原期精炼操作

还原精炼的具体任务是:

(1)尽可能脱除钢液中的氧;

(2)脱除钢液中的硫;

(3)最终调整钢液的化学成分,使之满足规格要求;

(4)调整钢液温度,并为钢的正常浇注创造条件。

上述任务的完成是相互联系、同时进行的。钢液脱氧好,有利于脱硫,且化学成分稳定,合金元素的收得率也高,因此脱氧是还原精炼操作的关键环节。

一、脱氧

1.脱氧产物的形成与排除

(1)脱氧产物的形成

电炉炼钢常用的脱氧剂有C、Mn、Si、Al及钙系合金等,其中除碳与氧反应生成CO 气体逸出外,其他各种元素在钢液中的脱氧产物主要是以硅酸盐或铝酸盐形式存在,因此这里所叙述的脱氧产物主要是指钢中的氧化系夹杂。

脱氧产物形成是由成核和长大两个环节组成,这也是脱氧过程的首要步骤。对于脱氧能力很强的Al、Zr、Ti元素,由于在微观体积内具有较大的过饱和度和能量起伏,所以均相成核的机率性较大。而对于脱氧能力较弱的Si、Mn元素,有可能依附在熔体内的现成基体上成核,这样的基体在钢液中总是存在的,如夹杂或其他原子集团或浓度差及其他不同的界面等,因此脱氧产物在熔池中的成核一般是比较容易的。

成核一旦发生,周围的脱氧剂和氧的浓度就立刻降低,为保持浓度的平衡,这些元素将不断地从远处扩散过来,从而引起核的长大。有人曾计算溶解氧从0.06%降到0.01%的硅脱氧,最终半径为2.5um的脱氧产物,长大到最终半径的90%只需0.2s,最终半径为20um的脱氧产物长大到90%也只需12.8s,可见脱氧产物的长大也是很快的。形成的脱氧产物因比钢轻及在界面张力或搅拌等因素的作用下必然引起上浮,从而有可能排除。

(2)脱氧产物的排除及其影响因素

脱氧产物从钢中的去除程度主要取决于它们在钢液中的上浮速度,而上浮速度又与脱氧产物的组成、形状、大小、熔点、密度以及界面张力、钢液的粘度与搅拌等诸因素有关,并大致服从斯托克斯公式:

式中v——脱氧产物颗粒夹杂上浮速度,cm/s;

r——颗粒夹杂半径,cm;

g——重力加速度,cm/s2;

ρ/——钢液密度,g/cm3;

ρ——脱氧产物密度,g/cm3;

η——钢液粘度,Pa?S;

K——常数,脱氧产物在钢液中上浮时可选用K=1。

由式中可看出,降低钢液粘度有利于颗粒夹杂的上浮。但钢液的粘度与成分、温度有关,依靠调整成分来降低钢液的粘度是有限的,而钢液的粘度随着温度的变化不大,例如30钢当温度由1535℃升至l610℃时,粘度仅降低0.00055Pa?s。通过计算可知,对于化学成分一定的钢种,提高温度改善钢液的流动性,在最理想的条件下,上浮速度只能增加 3倍左右。从式中还可看出,密度差越大,越有利于颗粒夹杂的上浮,但钢液内不同氧化物的密度变化范围较小,依靠改变颗粒密度至多能将上浮速度提高2~3倍。因此,要去除钢中氧化系夹杂,主要是依靠增加它的半径。此时,斯托克斯公式可简写成下式:

v=Kr2

上式表明,v与r 的平方成正比。因此,脱氧产物的颗粒半径越大,上浮速度越快, 例如在同一条件下的钢液中,当夹杂物颗粒半径r由20um增加到40um时,上浮速度提高4倍。上述讨论由于没有考虑脱氧产物的物化性质、界面张力以及钢液温度的不均匀性,也没有考虑熔体所处的各种动力学条件等,因此计算结果与实际观察约小2~4个数量级。所以,斯托克斯公式只能定性的估计脱氧产物半径的增大对上浮速度的影响,而用于计算有局限性。

悬浮于钢液内氧化物夹杂的聚集、长大过程称为聚结过程。聚结过程是自发的,并通过降低表面自由能所产生的聚合力来完成。然而液态的、粘性小的脱氧产物比固态的、粘性大的颗粒聚结上浮更容易,这是由它们各自不同的物理特性决定的。因此,脱氧方法和脱氧剂的选择是这样考虑的:最大限度地降低钢中溶解氧的浓度,并生成低熔点、流动性好的脱氧产物。然而,尽管固态的、粘性大的脱氧产物聚结比较困难,但在一定的条件下,只要有机会接触碰撞且通过表面自由能的降低,也会越聚越大,并加速上浮。

既然钢液中呈液态的脱氧产物易于聚结上浮,那么什么样的脱氧产物呈液态呢?各种元素的单独脱氧产物的熔点都高于炼钢温度,且元素的脱氧能力越强,脱氧产物的熔点越高,如Al2O3、TiO2、SiO2等。类似这样的脱氧产物在炼钢温度下都以固体颗粒状态存在。而复合脱氧剂或同时加入几种单元素的脱氧剂,在脱氧过程中易于生成低熔点的液态脱氧产物,如Mn0?SiO2、2MnO?SiO2、MnO?Al2O3等。由此不难看出,脱氧产物的熔点对其从钢中的排除也有很大的影响。

脱氧产物与钢液间的界面张力大小对脱氧产物的上浮与排除也有很大的影响。另外,因脱氧产物的组成不同,它们与钢液间的界面张力不同,所以也影响上浮与排除。例如,低碳钢的夹杂物中,大约含有95%的FeO和MnO的液态夹杂,它们与钢液间的界面张力实测为0.175~0.3N/m,当向此熔体中加入Al2O3时,界面张力约能激增到l.2N/m。夹杂物中Al2O3。的含量越少,界面张力越低,它们也就越不易排除。现已研究证明,脱氧产物的化学键越强,熔点越高,聚合力也越大,它们同钢液的化学作用也就越弱。因此,即使难熔的固体颗粒只要具有足够的界面张力,也能够以很快的速度从钢中上浮到渣层,也就是说,有许多强脱氧剂的脱氧产物也容易上浮与排除。如冶炼轴承钢,当用铝量由0...22kg/t钢增至2kg/t钢,钢中氧化物夹杂量由0.011%瞬间降至0.004%,Al2O3能够很快的上浮与排除的原因主要是聚合力很大。

在化学成分一定的情况下,提高温度降低钢液粘度有利于脱氧产物的上浮。温度对脱氧产物上浮与排除的影响是很大的。当其他条件相同时,高温冶炼能够获得较纯净的钢。这是因为高温除能改善钢液的流动性外,还能使一些固态的颗粒状脱氧产物得到相应的液化,有利于聚结、上浮与排除。然而冶炼的温度又不能过高,因为过高的温度,不仅增加电耗,也影响浇注工作的顺利进行。此外,高温吸气及冲刷、侵蚀耐火材料严重,容易重新引进不必要的外来夹杂,进而又恶化了钢的质量。

搅拌可使钢液产生紊流运动,使脱氧产物的碰撞几率增多及聚结和上浮速度加快,从而有利于脱氧产物的排除。炉前除了采用人工搅拌、机械搅拌、电磁感应搅拌、气体搅拌外,目前在包中进行喷粉与吹氩冶炼也盛行起来,尤其是出钢后的喷粉操作,在进行脱氧、脱硫的同时,还可降低脱氧产物SiO2等的活度,更有助于它们的排除。

总之,钢中脱氧产物的排除程度,在冶炼过程中取决于脱氧产物的组成和性质,这与脱氧工艺有直接关系。脱氧产物的颗粒越大,或密度差越大,或熔点低呈液态并与钢液间的界面张力越大,排除程度越好。此外,控制合适的冶炼温度及加强不同形式的搅拌,也有利于脱氧产物的上浮与排除。

2.电炉炼钢的脱氧方法

1)直接脱氧

直接脱氧就是脱氧剂与钢液直接作用,它又分为沉淀脱氧和喷粉脱氧两种。扒净氧化渣后,迅速将块状脱氧剂,如锰铁、硅锰合金或铝块(饼)或其他多元素的脱氧剂,直接投入(插入)钢中或加到钢液的镜面上,然后造还原稀薄渣,这种脱氧方法称为钢液的沉淀脱氧。这个概念起源于沉淀反应,因凡从钢液中析出氧化物的过程多属于沉淀反应过程。钢液的沉淀脱氧的速度较快,可缩短还原时间,但脱氧产物易残留在钢中而成为夹杂。钢液的喷粉脱氧是将特制的脱氧粉剂,利用冶金喷射装置并以惰性气体(氩气)为载体输送到钢液中去。由于在喷吹的条件下,脱氧粉剂的比表面积(脱氧粉剂和钢液间的界面积与钢液的体积比)比静态渣钢界面的比表面积大几个数量级,以及在载流氩气的强烈搅拌作用下,增大了扩散传质系数和改善了反应的动力学条件,因此钢液的脱氧速度很快,即在极短的时间内就可较好地完成脱氧任务,进而简化了冶炼工艺,缩短精炼时间,且又能降低各种消耗。另外,钢液的喷粉脱氧使密度小、沸点低或在炼钢温度下蒸气压很高的强脱氧剂(如Ca、Mg等)获得了广泛的应用;同时又可改变钢中夹杂物的属性和形态、数量与分布等,从而使钢的力学性能及工艺性能得到了提高。

目前,钢液的喷粉脱氧方式有两种:一种是在炉内进行,另一种是在钢包中进行。炉内的喷粉脱氧因熔池浅,喷溅严重,脱氧粉剂容易随着载流气泡逸出并在渣面上燃烧,所以脱氧粉剂的利用率偏低,但最终脱氧效果还是强于钢液的沉淀脱氧,而不如钢包中的喷粉脱氧。包中的喷粉脱氧,由于粉剂运动的行程长,因此利用率很高。脱氧产物在氩气搅拌作用下,碰撞聚结几率大,易于上浮与排除,而少数夹杂物就是残留在钢中,也是细小、分散、均匀分布,或属性与形态发生了改变,因此对钢的危害也较小。此外,钢包中的喷粉脱氧无二次氧化。钢液的喷粉脱氧剂有多种,除钙系合金粉剂可用来脱氧外,还有铝粉、硅铁粉、钛铁粉、稀土等,也可喷吹渣粉,如Ca0粉或掺入少量的CaF2粉,也可喷吹渣粉和某些脱氧元素的混合剂。这些粉剂喷前需经严格烘烤、筛分,H2O≤0.1%。钢液的喷粉脱氧无论是在炉内进行,还是在钢包中进行,只是脱氧效果有差异,而反应基理不变。

喷吹渣粉(如喷吹85%CaO和15%CaF2)的脱氧,并不是渣粉与钢中氧直接作用,而是渣粉喷入后,降低了aSiO2,增强了硅的脱氧能力,从而降低了钢中的氧含量。也有人认为在喷吹条件下,渣粉在氩气泡表面熔化形成一层液体渣膜,使钢中硅和氧一齐向渣膜扩散,从而生成了活度低的脱氧产物并随同氩气泡排出,而使钢液中的氧得到了进一步的降低。因此,利用喷吹渣粉脱氧,钢液中必须含有足够的硅量。此外,该法温降大且增氢降硅,这在制定工艺制度时不可不考虑。在喷吹时,由于脱氧粉剂的比表面积大,有的还以气态与钢液接触,以及在氩气的搅拌作用下,扩散传质好,因此,钢液的喷粉脱氧有它自己独特的动力学条件。尤其是钢包中喷粉脱氧,准确的操作可将钢中氧降到20×10—4%以下。

影响钢液喷粉脱氧的主要因素有:

(1)喷吹参数。喷枪插入的位置、深度及角度等有力地影响反应界面的大小和粉剂在钢液内的停留时间,直接影响脱氧效果。合适的喷粉强度和混合浓度能相应增加喷入量,提高渣钢的激烈搅拌程度。但过大的送粉速度也是不必要的。因为过大的送粉速度使脱氧粉剂难以和钢液充分作用而过早的逸出或使钢液裸露严重,因此应根据喷粉设备的固有特点选择最佳的喷粉工艺参数。

(2)脱氧粉剂喷入量和喷吹时间。一般是脱氧粉剂的喷入量越大,钢液中的最终氧含量越低;在喷吹强度一定的条件下,喷吹时间越长,脱氧效率越高。此外,喷后对钢液的吹氩洗涤时间不应过短,否则脱氧产物来不及排除,但喷吹和洗涤时间过长,易使包衬和喷枪侵蚀严重,且钢液又会重新氧化,因此过长的喷吹和洗涤时间也是不必要的。

(3)脱氧产物。钢液喷粉脱氧的产物对脱氧效果的影响很大。如果脱氧产物为大型球状易熔夹杂(如CaO—Al2O3),就能很快地上浮与排除。

(4)包衬材质。大量的科学实验和生产实践已经证明,在喷吹过程中,粘土砖包衬中的SiO2将与Ca和Al发生下述反应:

可以看出,粘土砖包衬在喷吹过程中侵蚀严重,且有大量的SiO2被还原而使钢中的Si含量增加,并影响Ca和Al的利用率,使钢液在浇注过程中氧含量略有回升。所以,粘土砖的包衬不能用来喷吹,尤其是采用钙系粉剂和铝质粉剂更不适用。目前,喷吹的包衬多是用高铝质或镁碳质的。

2)间接脱氧

还原稀薄渣造好后,将脱氧剂(一般以粉状脱氧剂为主)加在渣面上,通过降低渣中的氧含量来达到钢液的脱氧,这种脱氧方法称为间接脱氧。间接脱氧的理论根据是分配定律,即在一定的温度下,钢液中氧的活度与渣中(FeO)的活度之比是一个常数,表示为:

式中L0——氧的分配系数。

将粉状脱氧剂加入渣中,渣中(FeO)的含量势必减少,氧在渣钢间的分配平衡遭到破坏,为了达到重新平衡,钢液中的氧就向渣中扩散或转移,由此不断地降低熔渣中的氧含量,就可使钢液中氧陆续得以脱除。因此,间接脱氧又称扩散脱氧。

3)综合脱氧

综合脱氧的实质就是直接脱氧和间接脱氧的综合应用。在操作过程中,力求克服各自的缺点,集中优点来完成钢液的脱氧任务。该法脱氧既能保证钢的质量,又能缩短还原时间,因此目前在生产上比较常见。

3.钢液的脱氧操作

钢液除喷粉脱氧外,炉中脱氧还有多种,比较常见的有白渣法和电石渣法两种,它们的主要区别是:白渣中不含有CaC2,造渣时间短,适用于各类钢种;电石渣中含有CaC2,还原能力强,但冶炼时间长,在一般钢种上不使用。除此之外,还有中性渣等脱氧操作。

(1)白渣脱氧操作

扒净氧化渣后,要立即迅速加入稀薄渣料,尽量减少钢液的吸气与降温。稀薄渣料中石灰和萤石的体积比为3.5:1,对于中等容量的炉子,渣料的加入量一般为钢水量的3%~3.5%,小炉子可取上限值。为使渣料快速熔化形成渣液覆盖钢液,应用较大的功率供电及推渣搅拌,直至形成流动性良好的熔渣。稀薄渣最好一次造成,避免在还原过程中时而调稠、时而调稀,尽量做到造渣材料比及渣量准确,合理地使用电流电压等。

根据工艺要求,薄渣料加入前或随同薄渣料一起加入块状脱氧剂进行预脱氧。其中,使钢中锰(包括钢中残余锰含量)达到(接近)规格下限,硅达到0.10%~0.15%。薄渣形成后调入合金,然后按规程要求分批加入脱氧粉剂;第一批用量应多些,其他各批依次递减,每批间隔大于6min。作为脱氧剂加入的硅铁粉,大约有50%用于脱氧或烧损,余者进入钢液中,因此硅铁粉的总用量不能太多,一般为3~6kg/t钢。有的还使用硅钙粉或铝粉继续脱氧,这时更要控制硅铁粉的用量,以免钢中硅超出规格。第一批硅铁粉加入后,应加入0.3kg/t钢炭粉,其他各批根据渣况适量加入。炭粉和渣中的氧化物反应生成CO气体,能使炉内保持正压,进而防止还原渣被空气氧化。脱氧粉剂每批加入前,应对熔池进行充分的搅拌,加完后要紧闭炉门,密封电极孔和加料孔等,避免冷空气进入炉内而降低还原气氛。

高碱度还原性渣中(SiO2)和(MnO)的活度较低,在渣钢界面间可显著提高它们的脱氧能力。为使硅铁粉充分发挥脱氧作用,在加入的硅铁粉中应掺入适量的石灰,使渣中局部碱度增高,石灰的掺入量主要凭经验并根据熔渣的流动性而定。也可用碳化硅粉代替硅铁粉。但碳化硅粉加入时,熔池的温度一定要高一些。碳化硅粉的脱氧产物SiO2和碳化硅粉中的SiO2均能稀释熔渣,造稀薄渣时萤石的用量应酌减。碳化硅粉每批的加入量不能太多,因为加入太多,钢液易增碳;如果前期利用炭粉渣工艺脱氧或全扒渣时用炭粉大量增碳的钢液,不宜使用该种粉剂进行脱氧。此外,碳化硅的熔点很高(2450~2950℃),比较稳定,难熔化、分解,且碳化硅粉中的硅含量较低,收得率也低,因此在使用碳化硅粉脱氧时,钢液中的硅含量往往不能满足钢种的规格要求,这时就要利用硅铁调硅,或在碳化硅粉进行脱氧的同时补加硅铁。

在还原过程中,要控制好温度和加强搅拌,促使温度、化学成分均匀及脱氧产物充分上浮,并注意熔池内的化学反应与变化,保证有足够的碱度和合适的流动性,渣稠时应加入萤石或火砖块调整,渣稀时应补加石灰,如有大块镁砂浮起应立即扒出,严重时要换渣。一般还原期的总渣量为料重的4%~5%,小炉子取上限,大炉子取下限,而白渣的碱度应保持3.0左右。

还原期的熔渣初期含有大量的(FeO)和(MnO)而呈亮黑色,含有铬的氧化物呈绿色,随着脱氧反应的进行,这些氧化物的浓度不断降低,最后变为白色。流动性良好的白渣,活跃起泡沫,并能在耙杆上均匀沾粘2~3mm松而脆的渣层,冷却时很快破裂成白色片状,时间一长就散成白色粉末。这是因为渣中含有(2CaO?SiO2),在温度高于675℃时很稳定,当冷却至675℃以下时,会发生晶体转变,由β晶型变为γ晶型,致使体积增大而粉化。如果渣中(SiO2)含量低,而(MnO)含量高时,不易碎成粉末,这时应调整一下熔渣的成分。评定白渣的好坏,不但要看渣白的程度,还要看炉内渣色保持的时间。白渣颜色稳定,说明钢液间接脱氧好,如渣色反复变化,表明脱氧不良。当脱氧工艺完成后,渣况良好渣色变白,经充分搅拌后即可取样分析出钢成分。

白渣脱氧操作还有另外一种,就是当稀薄渣形成后,用炭粉和硅铁粉(或硅钙粉)混合物同时进行间接脱氧,这种操作俗称硅炭粉渣法。硅炭粉渣的第一批脱氧剂是由l~3kg/t钢炭粉和l~3kg/t钢硅铁粉(或硅钙粉)组成,加入炉中后保持l0~15min,渣变白后再分批加入硅铁粉等继续脱氧。实践证明,该法脱氧效果也很好,并在生产上获得了较为广泛的应用。

(2)电石渣脱氧操作

扒净氧化渣后,根据工艺要求加入预脱氧剂,然后立即造稀薄渣,渣况稍稠一点,再加入炭粉l.5~3.0kg/t钢。为了加速电石渣的形成,炭粉加入后应紧闭炉门,封好电极孔和加料孔,并使用较大的功率,炭粉在高温区与氧化钙发生反应生成碳化钙:

这是个强吸热反应,因此必须使用较大的电流与电压,以保证炉内具有很高的温度。当有浓浓的黑烟或带黑烟的火焰从炉子的缝隙冒出时,标志着电石渣已形成。为了减少形成电石渣的时间,缩短还原期,也可往钢液面上或随稀薄渣料或稀薄渣形成后直接加入小块电石3~5kg/t钢,然后再调入少量炭粉使炉内保持正压进行脱氧,同样能得到相同的效果。

碳化钙在渣中既能溶解又能扩散,脱氧反应如下:

在碳化钙进行脱氧的同时,为了保持正压而使用的炭粉在较低的温度区域内也能还原渣中的(FeO)和(MnO)。

电石渣是高碱性的还原熔渣,脱氧能力比白渣强。为使钢液充分脱氧,电石渣应保持20~30min。在电石渣下操作,除温度不好控制外,钢液还易增硅,大约增硅0.05%~0.15%/h,这是由于CaC2与渣中(SiO2)发生反应的结果,反应式如下:

此外,还易使钢液增碳,每小时约增碳0.05%~0.10%。如果采用电石渣出钢,渣中的游离碳也会使钢的成品碳增高。

电石渣因碳化钙含量不同分为弱电石渣(CaC21%~1.5%)和强电石渣(CaC22%~4%)。两者从现象上区分不太容易,只不过弱电石渣显灰黑色,强电石渣呈乌黑色,但它们和氧化渣有明显的区别,电石渣无光泽,而氧化渣呈亮黑色。另外,电石渣有时带有白色条纹,在空气中冷却会粉碎,放入水中能放出乙炔(C2H2)气体,并有强烈的刺激味,反应式如下:

因为CaC2的熔点高,所以电石渣粘度大,并与钢液润湿好。从出钢到最终浇注,由于渣钢不易分离而易使钢中夹杂增加,因此一般均要求电石渣变成白渣后方能出钢。

电石渣的脱氧情况可根据熔渣颜色的变化来判断。最初,熔渣中(FeO)和(MnO)含量较高,渣呈亮黑色,随着渣中氧化物的减少,变成棕黑色。当脱氧比较好时,熔渣表面无光泽或带有白色条纹,渣色完全变白,说明脱氧良好。电石渣变白后,一般还要分批加入硅铁粉或硅钙粉继续脱氧,每批加入量为1~1.5kg/t钢,每隔6~7min加一批,加前要搅拌,并使白渣保持到出钢。

为使电石渣及时变白,除炭粉的用量要合适外,还要控制好电流和电压。如果一旦难以变白,说明渣中游离碳和碳化钙过多,这时应采取稀释或氧化掉渣中游离碳及碳化钙的办法:可向熔池中加入石灰、萤石进行稀释;也可打开炉门及加料孔,让空气穿膛而过,将渣中的游离碳和碳化钙氧化掉;迫不得已时,还可向渣面上吹入少量的氧或采取部分扒渣补换新渣等办法进行处理。

(3)中性渣脱氧操作

扒净氧化渣后,根据钢种的工艺要求加入预脱氧剂,然后造中性稀薄渣。中性渣的渣料主要由火砖块掺入适量的石灰和萤石组成,使渣中的(CaO)与(MgO)的含量之和几乎同(SiO2)的含量相当,(MgO)是由稀薄渣及高温长时间侵蚀炉衬而得。由于这种渣的主要成分为MgO和SiO2,所以又称为MgO—SiO2中性渣。

中性稀薄渣形成后,要立即分批加入脱氧粉剂进行间接脱氧,使用数量应参照钢液中的硅含量和熔渣中的碱性氧化物的数量而定。中性渣能稳定钢液中的碳,且电阻大,有利于钢液的加热和升温。另外,这种渣表面张力大,有利于弧光稳定。但该种渣对碱性炉衬侵蚀严重,所以造渣过程中,渣量不宜过大,一般约为钢水量的l%~2%。此外,这种渣没有脱硫能力,因此对炉料要求比较严格,除冶炼含硫易切削钢或某些不锈钢外,已很少采用。

4.钢液脱氧效果的检验

目前,钢液脱氧效果的检验虽然尚未制定统一的标准,但电炉炼钢工对于脱氧工艺简单或使用弱脱氧剂脱氧并用于浇注镇静钢的钢液,在脱氧操作结束后,一般仍要进行脱氧效果的检验。如果发现脱氧不良,就要立即采取积极有效的措施加以处理。

钢液脱氧效果检验的方法较多,较为常见的有以下几种:

(1)经验判断法。有经验的电炉炼钢工从炉渣的颜色上可大概地判断出钢液脱氧的好坏:如果渣白且在炉中能保持长时间的稳定,而断口呈灰白并能在空气中粉化、碎裂,表明渣电(FeO)的含量较低,这时可判断为钢液脱氧良好。

(2)脱氧杯观察法。脱氧杯观察法是判断钢液脱氧好坏比较原始的方法。脱氧结束后,将钢液轻轻地注入清洁、干燥、圆形的高筒杯内,凝固后表面平静或有不同程度的收缩,说明钢液脱氧良好(见图l2—2a);如凝固过程中冒出一束束火花或在凝固后不但不收缩,反而有上涨、突起现象,这可能是脱氧不好的标志(见图l2—2b)。

图12—2利用脱氧杯观察脱氧

a-脱氧良好的试样;b-脱氧不良的试样

有时钢液脱氧良好,但因钢中的氢含量较高,也会引起上涨,鉴别方法如下:将钢液取出,插入少量的铝进行强制脱氧,然后再将钢液轻轻注入脱氧杯内,如不上涨,说明脱氧不良;如仍然上涨,说明钢中的氢含量较高。此外,经过充分脱氧的钢液,如果注入潮湿、不干净的脱氧杯中,或注入的钢水量太少或太猛,也容易引起上涨。因此,利用脱氧杯检验脱氧效果时,脱氧杯必须清洁、干燥,并将钢液轻轻地注入,钢水量最少也应超过脱氧杯高度的60%以上。对于经过充分脱氧,但温度高于l600℃,碳含量大于l%的高碳钢,如Tl2A等,当钢液在脱氧杯内凝固时,也往往冒出一束束火花,或有上涨并结成一层硬盖,给人一种似乎脱氧不良的假象。如将硬盖捅开,发现下面的收缩照样良好,表明该钢液脱氧仍然较好。这种假象的出现,可能是当温度高于1600℃时,钢中的渗碳体Fe3C发生分解,随着温度的降低,分解出来的游离碳与氧发生二次反应的结果。对于高钨钢,如3Cr2W8V等,有时也出现上述类似现象,原因可能是高钨钢的钢液,在凝固结晶过程中,随着温度的降低,首先析出的碳与氧继续发生反应,也有可能是含钨的渗碳体,如(Fe.W)3C或其他的复杂、低熔点的碳化物,如CrC6等较多,并在高温下分解而产生的游离碳与氧再次发生反应而造成的。一般温度越高,注速越快,上述假象越显著。

(3)化学分析法。化学分析能够快速测出还原渣中(FeO)的含量。如果渣中(FeO) 的含量小于0.5%,表明钢液的脱氧较好。

(4)仪表测量法。目前,通过仪表可直接测出钢液中的氧含量。所用的仪表有快速定氧定碳仪、电子电位差计、浓差电池定氧仪,还有测温定氧仪等多种。这些仪表使用方便,快速准确,有的只需几秒钟就可确切知道钢中的氧含量,因此,已在许多炼钢单位得到了普遍的应用。

5.钢液的终脱氧

为了进一步降低钢中氧含量,根据工艺要求,在出钢前或往出钢槽、出钢流中,也可在钢包中或在浇注过程中加入脱氧能力更强的元素,即在凝固前对钢液进行最后一次直接脱氧,称为钢液的终脱氧。经过终脱氧的钢液,凝固后可获得理想的结晶组织,各种性能也得到了提高。

由于终脱氧剂的用量、种类或操作不同,对钢中夹杂物的含量、形状、大小与分布的影响也不同。常用的终脱氧剂有铝、钛、硅钙或铈铁等。

铝的终脱氧多用在出钢前2~3min插入钢中,一般用量:低碳钢为lkg/t钢,中碳钢为0.8kg/t钢,高碳钢和高硅钢为0.5kg/t钢,而工具钢为0.5kg/t钢。目前出现的喂丝机,将制成的铝芯喂入钢中,可以节省铝的用量。用铝做终脱氧剂可控制钢液的二次氧化及减少钢锭产生气泡,同时又能防止Fe4N生成,避免钢产生老化。此外,铝和氮的结合能力较大,在脱氧良好的情况下,终脱氧铝和钢中的氮可生成氮化铝,并以高度弥散状态分布在钢中,在钢液结晶时可作为非自发核心而细化晶粒。对于晶粒度要求较高的钢种,残余全铝量保持在0.02%~0.05%范围内较为理想。终脱氧铝加入前,一般先铸成单重不大于3kg 的均匀块体,然后根据用量的多少插入熔池中,插前最好先放在炉门上烘烤一下,插时要使铝块迅速穿过渣层进入钢中,稍化一会再活动耙杆,待铝块化后,拿出耙杆,为了扩大铝在熔池中的终脱氧范围,插后应进行搅拌。在钢包中用铝块进行终脱氧,会因铝的密度小,易飘浮,或脱氧产物Al2O3在钢中呈团絮状分布,在钢包水口的内壁上悬挂或堵塞汤道而影响钢的正常浇注。目前,已研制出一种喷射装置,将预先制备的铝丸喷射到钢液的深部,使其在钢中分布均匀,从而既满足冶炼工艺的要求,又提高终脱氧铝的利用率。在浇注过程中,通过中注管添加铝丸或铝丝也可对钢进行终脱氧。钛的氧化物和碳化物也能成为钢液结晶时的非自发核心,因此也有细化晶粒的作用。钛的脱氧产物TiO2对锰或铁硅酸盐有降低熔点的作用,可以促使硅酸盐夹杂物聚集上浮,结果使钢中的这类夹杂物含量显著减少。此外,钛也是形成TiN最强的元素,虽然可减轻氮对钢质量的危害程度,但总会有一部分残留在钢中而形成带棱角的夹杂物。终脱氧一般使用钛铁,用量不大,不计烧损。加入前应插铝lkg/t钢,以确保钛的终脱氧效果,加时最好推开渣面,使之与钢液直接接触,也可在出钢槽或出钢流中加入。作为终脱氧的硅钙能减少钢中Al2O3 链状夹杂,增加球状夹杂,还能控制钢液的二次氧化、脱硫与除气,改善钢液的流动性和钢锭的表面质量及提高钢的冲击韧性等。终脱氧硅钙块的用量一般不大于lkg/t钢,出钢时直接投入钢流或钢包中。铈对钢的脱氧脱硫及除气与细化晶粒均有好处,还能减少钢液的二次氧化并能改善钢的力学性能等。铈铁的加入量一般为0. 3~0. 5kg/t钢,多直接投入钢流或钢包中,如在炉中使用,要用铁皮包好插入钢液中。

6.钢液的二次氧化与控制

在出钢和浇注过程中,脱氧良好的钢液,由于钢液的裸露并与空气直接接触,钢中某些元素有可能与空气中的氧或氮发生反应,生成二次氧化物及氮化物。此外,出钢后随着温度的降低,[O]在钢中的溶解度也降低,而这些元素与[O]的反应能力却增加,这样在新的条件下又要继续生成氧化物。类似这些现象统称为钢液的二次氧化。钢液的二次氧化使钢中夹杂物的总量明显增加,严重地影响成品钢的各种性能,因此,在生产过程中应尽量防止与避免。良好的终脱氧操作能将钢中的氧得到进一步地降低,从而可使钢液发生二次氧化的程度大大减少,尤其是用铝的终脱氧作用更大。此外,尽量缩短出钢时间,并采取大口喷吐、渣钢混出等,也能减少钢液的二次氧化。

目前,比较盛行的真空冶炼或钢包喷粉是在出钢后进行脱氧,能使钢中的氧含量降到很低的水平,基本上可避免或消除钢液的二次氧化。除此之外,在浇注过程中,采用惰性气体、液渣、或石墨渣保护浇注及真空浇注等,也都是控制钢液二次氧化的有力措施。

二、还原期的脱硫

电炉炼钢的脱硫任务主要是在还原期或利用钢液的炉外精炼来完成,脱硫是还原精炼的重要内容之一。

碱性电炉炼钢的各个冶炼阶段都能脱硫。一般熔化期的LS可达3~4,氧化期的LS可达8~10,而还原期的LS可达50~80。由此可见,大部分的脱硫任务是在还原期进行的。以下介绍还原期和出钢过程脱硫操作的强化措施。

1.还原期脱硫操作的强化措施

还原期脱硫操作的强化措施有:

(1)提高全扒渣温度。脱硫是吸热反应,提高全扒渣温度有利于反应的进行。此外,提高全扒渣温度还能使稀薄渣形成速度快,以及改善脱硫的动力学条件。

(2)提高还原渣的碱度。在渣量合适,流动性良好的情况下,渣的碱度R应保持在2.5 ~3.5之间,并在这个范围内尽量提高碱度,使脱硫反应朝有利的方向进行。

(3)加强直接预脱氧或采用强制性的脱氧工艺。在预脱氧剂的直接作用下,迅速降低钢中的氧含量,越低越好,可使钢中的硫脱除20%~30%左右。例如当碱度R=2.8~3.2,(FeO)<0.5%时,钢液的脱硫量可达40%以上,(FeO)=0.6%~l.0%时,钢液的脱硫量约为30%左右,而当(FeO)>1.0%时,钢液的脱硫量却很低。除此之外,碱性电炉炼钢的还原期如果采用电石渣等强制性的脱氧工艺,也有利于脱硫反应的进行。

(4)加强熔池的搅拌。加强熔池搅拌是强化脱硫的一项重要措施,特别是在还原的中后期,当钢液中的硫含量较低时,脱硫反应经常达不到平衡,通过搅拌强化硫的扩散,以改善脱硫的动力学条件。

(5)通过调整电流电压,改善脱硫速度。为了获得硫含量很低的钢液,在还原末期可采用低电压、大电流的办法进行脱硫。因低电压、大电流的弧光短,能吹动熔渣而活跃反应区域,进而有利于脱硫反应的进行。

(6)换渣操作。在脱硫困难的条件下,为了获得硫含量很低的钢液,在还原末期可采取部分扒渣或完全扒渣,然后按合适的配比加入石灰和萤石补造新渣,以此来达到扩大渣钢反应界面积和增大渣量,最终也能较好地完成钢液的脱硫任务。

2.出钢过程脱硫操作的强化措施

通常将出钢前钢液中硫含量与出钢后钢液中硫含量之比,称为出钢脱硫效率。以符号ηS。表示,则:

出钢过程脱硫操作的强化措施大体上有以下四项。

(1)保持还原渣的正常颜色。出钢前后还原渣中平均(FeO)含量降低越大,脱硫效率ηS提高得越大。出钢前还原渣为黄色,表明渣中(FeO)及(MnO)的含量较高,对出钢过程的脱硫不利。出钢前还原渣呈黑色或灰黑色,表明渣中游离碳较多或是电石渣,如果在该种渣下出钢,对脱硫有好处,但因熔渣与钢液润湿较好,出钢后渣钢不易分离,且又影响夹杂物的上浮,这也不是我们所希望的。绿色的还原渣中含Cr2O3较高,对脱硫略有好的影响。而亮黑色的氧化渣中(FeO)的含量高,对提高出钢脱硫效率ηS。极为不利。所以,保持还原渣的正常颜色(白渣或花白渣)是出钢过程强化脱硫操作的一项重要措施。

(2)保持还原渣的正常状态。这里主要是指熔渣的碱度与流动性,即出钢前要求还原渣要有合适的碱度和合适的流动性。碱度过高过低对出钢过程的脱硫均不利。当R=3.5~4.2时,出钢脱硫效率ηS最高。但原始硫含量[S]0越低,出钢脱硫效率ηS也越低。熔渣的碱度和流动性,这两者之间的关系极为密切。碱度过低影响脱硫反应的顺利进行,过高又破坏熔渣良好的流动性,阻碍硫在渣中的扩散与转移。所以,保持还原渣的合适碱度和良好的流动性是出钢过程强化脱硫操作的又一项措施。

(3)强化终脱氧用铝。终脱氧用铝量由0.5kg/t钢增加到1kg/t钢时,钢中溶解氧降低,而出钢的脱硫效率也跟着提高,因此为了更好地脱硫,强化终脱氧用铝十分重要,在操作过程中用量一定要满足工艺要求。加入钢中的铝不能直接脱硫,只能协助脱硫,它的主要作用是为了降低钢中的氧含量。当钢中的[%Al]≥0.06%时,钢中的氧含量将明显增高,因此一般钢中均规定残余铝的含量为0.02%~0.05%。

(4)强化出钢方式。脱硫反应是界面反应,扩大反应界面有利于脱硫。如果在出钢过程中,利用渣钢的激烈搅混来扩大渣钢间的反应界面,可使脱硫反应条件得到显著的改善。一般规律是出钢脱硫效率将随混冲速度的提高、混冲高度的增加、渣量的加大、渣温的提高以及(FeO)含量的降低而提高。为了充分利用这样的机会,目前电炉炼钢工多采取渣钢混出、大口喷吐、快速有力的方式出钢,可继续脱硫30%~50%。为此,要求出钢口要大、出钢坑要深。对于高架式的电炉,要求平台的设计高度要高些。

三、钢液温度的调整与测量

1.温度对钢液精炼的影响

电炉钢冶炼温度的控制主要是在氧化期,还原期只是经常进行必要的调整。正确掌握还原期的温度能够很好地控制冶炼过程,这对提高钢的质量和产量及降低各种消耗等均有重要的作用。冶炼温度过高,电耗增加,还原渣易变稀变黄难以控制,同时也降低元素的脱氧能力,使钢液吸气严重或使钢中夹杂总量增加。另外,也降低炉衬的使用寿命,增加耐火材料消耗。如果出钢温度过高,容易蚀断塞棒,而塞棒一旦蚀断就必然影响注温注速的控制。过高温度的浇注极易造成跑钢、粘模,锭(件)还易产生皮下气泡、缩孔、热裂,在成品材上容易引起白点或碳化物不均匀等缺陷。低温冶炼熔体的粘度大,渣钢间的物化反应不能充分地进行,既延长了冶炼时间,也影响脱氧、脱硫效果以及夹杂物的上浮与排除,成品材还容易出现发纹或断口等缺陷。低温浇注又易使水口或中注管凝死而影响浇注的正常进行,严重的甚至造成缺支短锭废品,就是勉强注成的钢锭也容易出现翻皮、结疤、冷截或中心疏松等缺陷。浇注温度低,钢锭表面质量差,既增加了清理量,也浪费了人力物力。

2.钢液温度的调整

氧化期的温度制度为还原期冶炼创造了条件,还原期温度的调整是在氧化期温度的基础上,考虑钢种的特点、出钢温度、炉外精炼的特点以及浇注条件等而逐渐完成的。

(1)出钢温度的确定

出钢温度一般按下式确定:

出钢温度=开浇温度+出钢温降+精炼与镇静温降

不同的钢种具有不同的特点,也有不同的性能和质量检验标准,因而对出钢温度的要求也相应不同。大量的生产实践已总结出:高碳钢的熔点低、流动性好,出钢温度应低一些,低碳钢的出钢温度应高一些;粘度大的,如高铬钢等,出钢温度应高一些,而流动性较好或对耐火材料腐蚀作用大的,如高硅钢、高锰钢或高锰高硅钢,出钢温度应低一些;合金元素较多和杂质较多的高合金钢温度控制应高一些,而一般合金钢的温度控制相应要低一些;对发纹或断口等缺陷敏感性强的钢种温度控制应高一些,而对裂纹、缩孔、白点或碳化物不均匀等缺陷敏感性大的钢种温度控制应低一些;上注时的出钢温度应比下注时的低一些;多盘浇注的出钢温度应比单盘浇注的高一些,对于没有升温能力的炉外精炼或包中合金化或包中加固体合成渣的,出钢温度要求更高一些;一般夏季出钢温度要比冬季低一些;出钢量少的出钢温度应比出钢量多的高一些。

(2)钢液温度的调整

因钢液在还原前已被加热到等于或稍高于出钢温度,而还原后钢的熔点是下降的,所以还原期温度的调整过程实际上就是使钢液温度保持或逐渐下降到出钢温度的过程。还原期温度的调整主要是靠灵活正确地使用电流与电压,一般是使冶炼温度由高逐渐降低并达到满足出钢温度的要求为止。全扒渣后,为了弥补扒渣时钢液热量的散失与造渣材料及合金熔化的耗热,应供给较大的功率,稀薄渣形成后再根据具体情况,合理地降低电压或减少电流,以避免在还原期后升温或停电急剧降温。还原期的停电降温大多是氧化末期冶炼温度过高所致,停电急剧降温会使熔池失去电弧搅拌的作用而影响钢液成分和温度的均匀,还会使熔渣突然变稠变坏而减弱炉中的还原气氛,降低渣钢间的各种物化反应如脱氧、脱硫等,同时因急冷也会给炉衬带来较大的损坏。所以,电炉炼钢工在控制冶炼温度时,应尽量避免还原期的停电急剧降温。

3.钢液温度的测量

还原期的熔池比较平静,各个区域的温度难以均匀。熔渣的温度电极底下最高,靠炉壁渣线附近的较低;钢液温度,上层比下层的高,普通功率电炉在没有搅拌时,上下温差可达50℃,搅拌得理想一些,还相差l0~20℃;渣线附近与中心部位钢液的温差约为30~40℃;熔渣温度一般高于钢液温度40~80℃。因此,为使还原期钢液的温度趋于均匀,应经常进行必要的搅拌,尤其是在测温之前这项操作更显得突出重要。

1)钢液温度的仪表测量

钢液温度的仪表测量有以下方法。

(1)光学高温计测温法。光学高温计又叫比色高温计。它的原理是将高温计的电阻丝通以电流后的颜色与钢液的颜色比较,当一致时,高温计的温度读数即是钢液的光学温度。此法测量简便,但误差大,测得结果也不是钢液的实际温度,一般钢液的光学温度比热电偶温度约低80~100℃。

(2)热电偶测温法。热电偶是利用不同的金属在不同的温度下具有不同的热电动势制成。热电偶的种类较多,然而根据使用方式不同分为点测和连测两种:点测多使用消耗型侵入式热电偶,而连测是将连续测温仪安放在炉体或钢包的某一部位上进行测量。热电偶测得的数值基本上能反映钢液的实际温度,因此目前获得了比较广泛的应用。但有一点需指出,点测热电偶测得的结果是在操作正常、炉况良好和充分搅拌的情况下才具有代表性,而当炉况坏、熔渣中MgO的含量较高或在后升温的情况下,熔渣的温度有时远远高于钢液的温度,这时热电偶所测的钢液温度也就往往低于熔渣温度许多,可是通过出钢过程的渣钢混冲,熔渣的热量就要传给钢液而使钢液的温度升高。这时候就会出现炉内测量的温度低,而出钢后钢包内钢液的实际温度却增高的现象。

2)钢液温度的经验判断

钢液的温度主要靠仪表来测量,除此之外,电炉炼钢工还经常利用下述经验进行判断:

(1)钢液结膜(静膜)判断法。不同钢种的钢液具有不同的表面结膜(静膜)温度。钢液的温度越高,下降到结膜(静膜)温度所需的时间越长,因此根据钢液的结膜(静膜)时间可以间接地判断钢液的温度。钢液的结膜(静膜)时间一般用秒计量。碳素结构钢和碳素工具钢以结膜为准,高铝或高铬钢等以静膜为准。钢液的结膜(静膜)秒数与相对应的大概温度参照关系见表l2—5。

表12—5钢液结膜(静膜)秒数与钢液温度的参照关系

注:此表适用于碳素结构钢、合金结构钢、碳素工具钢、舍金工具钢、弹簧钢。

利用钢液的结膜(静膜)时间来判断钢液温度的高低是一种简单易行的方法,在生产上得到了广泛的应用。但该法往往受生产或外界条件的影响,有时也难以确切反映钢液的真实温度,如在冷空气流的作用下,或渣况不良渣色不正常,或操作不标准(如没有熔渣覆盖或钢水量少),钢液在勺内散热快,结膜(静膜)秒数看上去不高,而实际温度可能高,也有的将样勺反复多次粘渣或用红勺盛取高温钢液,或样勺容量尺寸超标准,结膜秒数很高,而实际温度可能不高,因此利用该法进行判断时,不要被这些假象所迷惑。由于样勺的容积大小、勺壁的厚度对钢液的结膜(静膜)时间有直接影响,因此选用标准的样勺是很重要的。目前,一般常用样勺的尺寸如图12—3所示,该种勺盛满钢液时的重量约为lkg左右。

图12—3样勺的尺寸

(2)观察钢液颜色判断法。由于钢液在不同的温度下具有不同的颜色,我们可以根据钢液的颜色来判断温度的高低。该法熟练后比较有代表性。在样勺中观察钢液时:

钢液呈红色或暗红色,温度很低,约为1550℃以下;

钢液呈亮红色,温度约为1600℃;

钢液呈青白色,液面带有烟苗,约为1620℃左右;

钢液呈白色,冒浓烟,约在1650℃左右;

钢液完全发白,在蓝眼镜下感到耀眼,且浓烟直冒,表明温度很高,约在1670℃以上。

(3)钢液粘勺测温法。该法是用几个样勺盛取钢液,分别静置不同的秒数后将钢液倒出,观察钢液经过多少秒后开始粘勺,并以开始发生粘勺的秒数作为钢液温度的标志,称为粘勺秒数。此法经常用于含高铬、高铝、高钛的合金钢上。

(4)试样凝固状态判断法。一般是将钢液慢慢地注入试样碗内,如收缩很厉害,边缘呈尖薄,表示温度高;呈圆形温度中等;凸起则表明温度很低。

(5)钢液流动情况判断法。将钢液从10cm左右的高度上慢慢地浇在光滑、清洁的铁板上,钢液流动的距离越长,说明温度越高;如果将铁板焊住则表明温度更高。该法常用于熔点低或易氧化元素较多而用其他经验无法判断的高合金钢上。

(6)钢条熔蚀判断法。将10~12mm的钢条弯成钝角,插入样勺的钢液中来回搅动,5~8s后抽出检查。如果钢条断面细而尖,说明温度较高;平而粗糙表示温度一般;钢条表面粘有残钢则表明温度较低。

此外,还可从某些元素的成分上对钢液温度进行大概的判断:在操作正常的情况下,锰是钢液温度的标志,如果氧化末期钢中锰含量没有损失,表明钢液的实际温度较高;如果还原末期钢的脱硫量较大或硅粉用量正常,但收得率低,也说明钢液的实际温度较高。还可从还原气氛上进行判断:如果出钢前电极孔没有封闭死,或时出时缩突突地冒出火苗,有时熔池中还发出“嘎啦、嘎啦”的响声,表明钢液的实际温度不高;如果电极孔已自动封闭死,但却从炉门的边角缝处冒出滚滚的浓烟,或加硅粉时火焰大,说明温度较高。当然,还可从渣线附近是否沸腾进行判断:如果还原末期熔渣稀或渣线附近处有沸腾,说明钢液温度较高,否则只是一般。

四、钢液成分的调整

1.合金元素的加入原则及收得率

合金元素的加入原则:

(1)要使合金元素在钢液中快速熔化、分布均匀;

(2)收得率要高,成本要低;

(3)合金材料带入钢液中的杂质,如SiO2、Al2O3等能有机会去除;

(4)加入的合金材料对熔池温度不要波动过大,即使波动较大,也应在炼钢工的掌握之中,否则将会影响操作的正常进行。

在冶炼过程中,为了满足上述的加入原则,应根据合金元素的物化性质、使用量和冶炼方法等来确定加入时机和加入方法。合金元素与氧的亲和力比铁小的,如镍等,大量使用时,应在装料或熔化期加入,少量使用时,应在氧化期或还原期调入。与氧的亲和力和铁比不相上下的合金元素,如钨等,如采用返吹法或不氧化法冶炼时,应在装料或熔化期加入,如采用矿氧法冶炼时,应在氧化末期或还原初期加入;与氧的亲和力比铁稍大一些的合金元素,如Cr、Mn等,应在全部扒除氧化渣后或还原期加入;与氧的亲和力比铁更大的易氧化元素,如Ti、B等,应在出钢前或出钢过程中加入。对于高熔点的难熔合金元素,在考虑其氧化性能的条件下,应尽早一些调入。对于采用返吹法或不氧化法冶炼的高合金钢,尽管有的合金元素与氧的亲和力比铁大,但它们也可随炉料一同装入,如铬铁等。为便于炉前操作,现将一些合金材料的加入时间、加入方法及其收得率详述如下:

(1)镍。在炼钢条件下,镍实际上不氧化。大量使用时可随炉料一同装入,也可在熔化期或氧化期加入,这样经过氧化沸腾能使镍带入的气体得以较好的排除,而对于少量使用的镍一般在还原期调入。由于镍在电弧高温下有挥发损失,因此当随同炉料装入时,应装在远离电弧高温区的部位。一般冶炼低镍合金钢时,镍的收得率可按100%计算;而对于冶炼的镍基合金,挥发损失可达2%~3%。

(2)钴和铜。在炼钢条件下,钴和铜也是属于不氧化元素,既可随炉料一同装入,也可在还原期随用随调,收得率均按100%考虑。

(3)钼铁。钼铁的熔点高,密度大,MoO3易挥发。钼铁一般随炉料一同装入,也可在熔化末期或氧化末期或稀薄渣下加入。还原末期补调的钼铁应选用小块的并在出钢前15min加入。钼铁的收得率一般为95%~l00%,但当钢中钼含量大于4%以上时,收得率应取下限。

(4)钼酸钙。冶炼钼含量小于1%的钼钢时,可用钼酸钙(CaMo04)代替钼铁。它或随炉料装入或在氧化期加入。在冶炼过程中,钼酸钙与铁和碳能发生如下反应:

由于钼酸钙中的钼还原很完全,因此熔渣中不存在钼的氧化物。但为了保证钢液的还原性能和钼含量的稳定,钼酸钙最好不要用于出钢前的补调成分。

(5)钨铁。钨和镍、钼相比,与氧的亲和力较大,当(FeO)的含量较高时,它有氧化损失。此外,钨的氧化物在高温下还要挥发。为了减少钨的损失,氧化法冶炼的钨钢,钨铁应在氧化末期或稀薄渣下加入。采用返吹法或不氧化法冶炼的钨钢,钨铁可随炉料一同装入,然后在氧化末期或稀薄渣下调整,还原末期补调的钨铁应在出钢前l5min加入。由于钨铁密度大,熔点高,易沉积炉底熔化慢,因此加入前要预热,加入后和出钢前要充分搅拌,以保证钢液中钨含量趋于均匀。钨的收得率一般约为85%~98%,且含量越高,收得率也越高。

(6)铌铁。铌与氧的亲和力大于铁。氧化法或返吹法冶炼时,铌铁在出钢前20~30min 内加入,如果工艺的冶炼温度较低,则需40min以上,以使熔化完全。不氧化法冶炼时,铌铁可随炉料一同装炉,脱氧良好时,铌的收得率一般为95%~l00%。

(7)铬铁。铬与氧的亲和力大于铁。氧化法冶炼所用的铬铁在稀薄渣下加入;返吹法或不氧化冶炼的铬铁可随炉料一同装入;还原末期补调的铬铁在出钢前10min加入。容量小而在出钢前补加大量铬铁的炉子,要相应延长冶炼时间,以利于铬铁的熔化与熔池的升温。一般钢中铬铁的收得率约为95%~98%,而用返吹法冶炼高铬钢时,收得率约为80%~90%。

(8)锰铁。锰与氧的亲和力大于铁。锰铁应在稀薄渣形成后或随同渣料加入,还原末期调整的锰铁在出钢前10min加入。锰铁的收得率一般为95%~l00%。

(9)钒铁。钒易于氧化也易于还原,钒铁的加入时间应根据钢种而定。冶炼低钒钢(V≤0.30%)时,应在出钢前8~15min加入;冶炼中钒钢(V=0.30%~0.50%)时,应在出钢前20min加入;冶炼高钒钢(V=0.50%~l.00%)时,应在出钢前30min加入;炼制更高的钒钢(V>1%)时,钒铁可在出钢前40min加入并在出钢前进行补调。单渣法冶炼所用的钒铁也可于熔化末期分批加入。钒铁的收得率一般按95%~98%考虑。

(10)硅铁。硅和氧的亲和力较大。硅铁除镜面加入的外,一般均在脱氧良好的情况下加入。对于少量调入的硅铁应在出钢前10min加入,收得率按100%计算。冶炼硅钢时,硅铁应在出钢前l0~20min加入,与此同时还要补加适量的石灰,这时硅的收得率约为95%~98%。

(11)钛铁。钛易氧化,但钛铁的价格也比较贵,所以它主要用于钢的合金化,并在钢液脱氧良好的情况下,在出钢前5~15min加入。钛铁的密度较小,加入后要用铁耙子压入钢液中,以增加钢液对钛的收得率。当大量加入钛铁时,如熔渣稀,温度高或钢中硅也高,应先扒出一部分熔渣后再加入,这样既可提高钛的收得率,又可防止硅超出规格。当然也可不扒渣,但钛铁加入后钢液增硅的现象不容忽视,这是因为钛铁中含有较高的铝和硅,而A1、Ti还会与渣中的(SiO2)发生反应使硅还原。炉中加入的钛铁的收得率与钢液的脱氧情况及钢中的钛含量有关。如果脱氧良好,即渣中(FeO)<0.5%,当钢中的钛含量小于或等于0.15%时,收得率约为30%~50%;、当钢中的钛含量为0.20%~0.80%时,收得率约为50%~65%;当钢中的钛含量大于0.80%时,收得率为70%~90%。

(12)铝锭。铝的合金化多用铝锭。一般在脱氧良好的情况下在出钢前8~15min扒出适量的还原渣并补造新渣后加入。为了提高铝锭的收得率,加入后应用铁耙子不断地拍打,使铝锭下沉并与钢液充分接触。炉中加入的铝锭的收得率与钢液的脱氧情况及钢中的铝含量有关。如脱氧良好,即渣中的(FeO)<0.50%:当铝含量为l%时,收得率为70~80%;当铝含量为2%时,收得率为80~85%;当铝含量为3%时,收得率为85~90%;当铝含量大于5%时,收得率为90~95%。铝锭加入前,要注意控制钢液的温度,既要为铝的脱氧产物Al2O3的上浮创造条件,进而有利于防止铝钢产生点状偏析和发纹及石板状断口等缺陷,同时也要避免出现无法浇注的高温钢。

(13)硼铁。硼与氧和氮的亲和力很强,硼铁加入前,钢液必须脱氧、脱氮良好,并在加前还要插铝lkg/t钢和加钛0.05%(不计烧损),以固定钢液中的氧和氮。硼铁既可在炉中加入,也可在包中使用。在炉中加入时,硼铁要用铝皮包住并插入钢液中,加入后3~5min 内出钢。包中使用时,应先挡渣出钢,加完后方可渣钢混出。为了减少硼的损失,有的在出钢前加硅钙0.5~lkg/t钢。硼铁的收得率为30%~50%,如果采用喂丝机向钢液中喂硼,收得率可达90%。

(14)氮。氮易于扩散逸出,不能在氧化期加入。在返吹法冶炼中,搭用含氮返回料时氮的收得率也较低,一般为30%左右。当向钢液中吹入氮气时,虽然也能增加氮含量,但收得率较低且不稳定。在电炉炼钢上,作为合金化元素使用的氮,通常以氮锰合金或氮铬合金的形式在还原期加入,影响收得率的因素主要有合金中的氮含量、钢液的温度及钢中的化学成分等。一般是合金中的氮含量低(如l%左右)时,收得率可达100%;氮含量较高(如6%~7%)时,收得率较低。钢液的温度过高时,氮合金中的部分氮易挥发;而钢液的温度过低时,氮的溶解度下降,两者均影响收得率。当PN2=0.1MPa时,钢中的Mn、Cr、Mo元素在钢中现有的浓度下不会生成独立相的氮化物,但能显著地提高氮在钢液中的溶解度,而使收得率大为提高。因此,为了提高氮的收得率,在氮合金加入前,在钢种规格允许的范围内,尽量让钢液中先有足够的Mn、Cr或Mo。氧是钢液的强表面活性物质,当钢中的氧含量高时,也影响氮的溶解速率,所以氮合金尽量在脱氧良好的情况下加入。此外,氮的收得率还与冶炼方法有关,通常是不氧化法冶炼的收得率比氧化法或返吹法的高且又稳定。

(15)硫和磷。冶炼高硫钢,硫是以硫磺或片状硫化亚铁的形式加入。硫磺在全扒渣后加入,收得率为50%~70%;如用于包中喷粉,收得率更高;片状硫化亚铁在出钢前加入,收得率为l00%。冶炼磷钢,磷是以磷铁的形式在还原初期或还原末期加入,收得率为100%。为了保证硫、磷的回收,还原期应采用中性渣系冶炼。

(16)稀土金属。稀土金属应在终脱氧后加入炉中效果较好,而且在炉内停留的时间越短,收得率越高,一般约为20%~40%,当然,包中加入也能获得较为满意的结果。

(17)稀土氧化物。稀土氧化物一般是与硝酸钠或硼钙或硅钙混合后加入包中,如钢中允许硼存在时才使用硼钙,收得率为30%~40%。稀土氧化物吸收氢的能力较强,用前切勿在空气中放置过久,以免将气体带入钢中。

一些常用合金材料的加入时间和收得率见表12—6。

表12—6常用合金材料的加入时间和收得率

2.炉内钢液成分的控制与调整

化学成分对钢的质量和性能均有很大的影响。大量的科学实验和生产实践表明,一些钢种的化学成分除应符合技术条件的规定外,还要控制在某一更加严格的范围内,才能满足于对该钢种质量和性能的更高要求。对于没有特殊要求的钢种,成分一般按中下限控制,这样既可保证钢的质量和性能的要求,又能节约合金材料。

实际上,钢液化学成分的控制贯穿于一炉钢冶炼的始终:炉料入炉前,炼钢工首先核对料单,检查炉料的装入量,配碳量以及装入的合金材料的数量与成分是否合适,发现贻误应立即纠正。全熔分析结果报出后,要对照钢种的规格成分核对各元素的分析成分,对于残余元素的含量超过或接近最高许可值的结果,要反复核实验证,然后决定是否调整冶炼方案,绝不允许因残余元素含量不清、不准而轻易地终止一炉钢的冶炼。经验告诉我们,杂铁比越高,残余元素成分波动越大,越要谨慎小心。

氧化末期的钢液成分控制终脱碳是关键。在操作正常的情况下,应该是钢中的不足之碳从铁合金、电极或还原渣中吸收而得到弥补,无需增碳即可满足钢种规格要求。出钢前,如果碳含量低于控制规格,还可用低S、P的增碳生铁进行增碳,但增碳量最好不大于0.05%,以免带入过多的杂质而影响钢的质量。除此之外,还需考虑生铁带入的S、P值加上钢中的也不许超过钢种规格的含量。对于焦油打结的新炉衬或电石渣出钢及用焦油砖砌制的新包,出钢过程钢液容易进碳,且低碳钢较比高碳钢进的更容易。

钢中的磷由于补加合金所带入的和残留炉中氧化渣中的磷还原,在还原后期略有增加,但只要全扒渣时的磷含量符合规定的扒渣条件,一般不会超过钢种规格的许可值。钢中的硫在碱性渣操作正常的情况下,一般均能很顺利地降到所要求的范围内。此外,在出钢过程还能脱除许多。但在出钢前如果发现脱硫不好,应立即采取妥善的措施进行处理,切不可草率地决定超硫出钢。钢中的硅一般是通过间接脱氧所加入的硅粉获取,余者不足部分在出钢前可利用硅块补调。当然也可全部用硅块调入,这对扩大沉淀脱氧的快速炼钢来说,具有很大的实际意义。钢中的锰,一般是在脱氧过程中,从加入的锰合金上获取,控制时要考虑钢中的残余锰量。对于高锰钢或高硅钢,在出钢前调整补加锰或硅时,一般均调到偏中上限。这是由于钢中的锰或硅含量很高,在出钢过程中氧化损失较多。对于高硅高锰钢,因硅对氧的亲和力强于锰,所以硅调到中上限,而锰调到中限即可。出钢前大量的加铝或加钛易使钢中的硅含量增加,因此对于这类钢种,在还原操作过程中,应控制钢中的硅及渣中Si02的含量。钢中的铬除返吹法或不氧化法的冶炼由专用料带入一部分外,其余的均从加入的铬铁中获取。对于镍、铝元素含量应见到两个分析结果相差不大,且与料单配入相符才能进行调整。如与料单配入的不一致应查清原因或经多次分析确认无误再调整。对于高熔点不易氧化元素的成分一般一次调入中下限或中限。对于易还原的合金元素一般调到下限或接近下限,不足的含量在出钢前补加。对于冶炼温度偏低、搅拌又不好或加入的时间较短就取样的铬钢等,成分分析往往偏高,而钢液中实际含量却没有那么高。合金化时,如加入的合金呈粉末状态的较多,成分分析又容易偏低,而钢液中的实际含量也确实较低,这时成分的调整应偏高一些。对于冶炼温度偏低,搅拌又不好且含有较高的高熔点元素的钢液,高熔点元素的成分分析有时偏低而实际含量可能不低,这时成分的调整应要谨慎小心。对于连续冶炼多炉的密度大、高熔点的高合金钢,第一炉的密度大、高熔点的合金元素应往中上限控制,其余各炉一般调入中下限即可。

除此之外,钢液成分的控制与调整还要了解上一炉钢的成分、残钢与残渣对这炉钢成分及钢液重量的影响。对于刷炉洗包的钢种,由于炉内或包中留有前炉冶炼的残钢残渣,其中合金元素的含量又很高,势必有部分要被回收,这时成分的控制与调整应以进入下限即可。上一炉的钢液有时翻不净就从事下一炉钢的冶炼,如果炉中剩余的残钢较多,势必影响下炉钢的钢液重量,在炉中调整成分时,如不考虑极易引起化学成分的脱格。多年的生产经验还得出,当计算成分与分析成分不一致时,应查清原因后再调整,否则也会造成化学成分的波动。对于采用留钢留渣的操作,钢液成分的控制与调整主要是在包中进行。

总之,钢液成分的控制与调整,必须全面分析、通盘考虑,一个好的电炉炼钢工应该通过长期的生产实践,积累丰富的经验,才能掌握这方面的技术。

3.钢液成分的计算

(1)钢液重量的校核

在实际生产中,受计量不准或炉料质量波动较大或操作不当等因素的影响,极易出现钢液的实际重量与计划重量不符,而给化学成分的控制及钢的浇注造成困难。因此,校核钢液的实际重量在生产中偶尔也能遇到。因Ni、Mo元素在一般合金钢中的收得率比较稳定,所以可借调镍调钼的办法来校核钢液的重量,校核公式如下:

式中P——钢液的实际重量,kg;

P0——原计划的钢液重量,kg;

△b——炉中分析的增镍或增钼量,%;

△b0——按P0计算的增镍或增钼量,%。

例1 原计划钢液的重量为20t,加钼前钼的含量为0.16%,加钼后计算钼的含量为0.25%,实际分析为0.26%。求钢液的实际重量?

由例l可以看出,钢中钼的含量仅差0.01%,钢液的实际重量就与原计划直量相差2t,而化学分析往往容易出现±(0.0 l%~0.03%)的偏差,这样就很难准确地校核判断钢液的实际重量。因此,上式只适用于理论上的计算,而在实际冶炼过程中,钢液重量的校核一般均采用下式计算:

式中P——钢液的实际重量,kg;

G——镍或钼铁的补加量,kg;

C——镍或钼铁的成分,%;

△b——炉中分析的增镍或增钼量,%。

例2 往炉中加入钼铁15kg,钢液中的钼含量由0.20%增到0.25%,已知钼铁中钼的成分为60%,求炉中钢液的实际重量?

解:

例3 冶炼20CrNiA钢,因电子秤临时出故障,装入的钢铁料没经称量,由装料工估算装料。求炉中钢液重量?

解:往炉中加入镍板100kg,钢液中的镍含量由0.90%增到1.20%,已知镍板的成分为99%,则:

对于不含镍或钼的钢液,重量的校核主要凭借经验。由于锰受冶炼温度及钢中的氧、硫含量的影响较大,因此利用锰元素来校核钢液的重量,只能在还原末期进行,而在氧化过程中或还原初期的准确性较差。

(2)单一合金元素的加入计算

计算公式为:

P=KQ

式中P——钢液重量,kg;

Q——装料量,kg;

K——炉料的综合收得率,%。

式中G——铁合金加入量,kg;

a——合金元素控制规格成分,%;

b——炉中元素的分析成分,%;

c——铁合金中的元素成分,%;

f——合金元素的收得率,%。

当钢中元素的规格含量不高时,合金用量对钢液总重量的影响可忽略不计,即上式中分母的G 略去,合金元素加入的计算公式可简化为:

上式适用于碳素钢或低合金钢合金元素的加入计算,即指单元合金元素含量小于3%或加上其他合金元素含量的总和小于3.5%的钢种。而钢中元素的含量越高,计算误差越偏大,但也不能脱出规格。

例4 冶炼38CrMoAlA钢。已知装料量为20t,炉料烧损为4%,炉中分析铝含量为0.05%,铝的控制规格成分为0.95%,铝锭中铝的成分为98%,铝的收得率为75%。求铝锭加入量?

解:

第八节 出钢

一、电炉的出钢条件

出钢是炉前冶炼的最后一项操作,但必须具备出钢条件才能出钢,否则将会影响钢的质量和产量。传统电炉的出钢不包括留钢留渣操作,出钢条件如下:

(1)化学成分全部进入控制规格。出钢前,钢液的化学成分凡属炉前调整的必须全部进入规格,没进入控制规格或没有满足合同要求的不准出钢。

(2)出钢温度合乎要求。合适的出钢温度不仅是保证钢液质量的关键,而且也是保证浇注操作顺利进行的首要条件之一。因此,钢液的出钢温度必须满足所炼钢种的工艺要求,既要避免出温度过高的高温钢液,也不许出不能浇注或勉强维持浇注的低温钢。

(3)钢液脱氧必须良好。为了降低钢中央杂物,尽量提高钢的纯洁度,防止帽口上涨、气泡和发纹等缺陷的产生,电炉钢脱氧不良的钢液不能用来浇注。因此,对于没有炉外脱氧手段的钢液,要求炉中必须脱氧良好,否则不能出钢。

(4)熔渣的流动性和碱度要合适。出钢前,熔渣的流动性要好,碱度也要合适。因粘稠的熔渣在出钢时会造成先出钢后出渣,或只出钢液不出渣或熔渣出得很少,易使钢液温度急剧下降,影响正常的镇静与注温注速的控制。此外,粘稠的熔渣在包中极易卡住塞杆而给浇注工作带来困难,而且混在钢中的粘渣不易上浮而影响钢的内在质量;过稀的熔渣也会使钢液降温快,并极易侵蚀包壁和塞杆,轻者降低钢包的使用寿命,重者蚀断塞杆影响浇钢操作的顺利进行。合适的碱度有利于降低钢中的氧含量,也能较好地去除钢中的硫。此外,碱度的高低还能改变渣中Si02的活度,这一点对于高硅钢和高铝钢的冶炼极为重要。因此,出钢前应针对具体情况,使熔渣要有合适的碱度是十分必要的。

(5)渣量和渣色要正常。出钢前,炉中的渣量和渣色要正常。如果炉中渣量少或翻入包中的渣量不够,易造成钢液裸露,不仅吸气严重,而且也极易降温或出现粘包底现象,更有甚者,因粘包底过多会使浇注量不足。渣量过大既会增加造渣材料的消耗,又影响钢水量的准确判断。

出钢时,一般要求白渣或花白渣,最忌讳电石渣或黄渣。因电石渣润湿较好,渣钢不易分离,影响非金属夹杂物的上浮与去除。而黄渣表明(FeO)或(MnO)含量较高。除此之外,提前备好钢包和浇注系统,保证设备运转正常,并使出钢口畅通、出钢槽平整、出钢坑清洁干燥,炉盖和出钢槽吹扫干净等,也是出钢前必须要做好的准备工作。

为使出钢操作有章可循,某厂根据多年积累的经验,总结出“五不出钢”的规定很值得借鉴,具体内容如下:

(1)出钢分析两个样的化学成分相差太大,没有查清原因及未经处理不准出钢;

(2)计算成分和分析成分不一致时,没查出原因不准出钢;

(3)化学成分的调整按计算或分析未进入厂控、内控规格或没有满足合同要求也不准出钢;

(4)渣子和温度未达到要求不准出钢;

(5)不经值班和监督人员的批准不准出钢。

二.电炉的出钢方式

传统电炉的出钢方式有三种:

(1)深坑、大口喷吐、渣钢混冲。这种出钢方式的优点是钢液能得到熔渣较好的保护,既减少了钢液的降温,又可控制钢液的二次氧化与吸气。此外,钢中悬浮的非金属夹杂物也能得到熔渣充分的洗涤,利于上浮与去除,大口喷吐还可进一步脱氧与脱硫。因此,该种出钢方式比较常见。

(2)先出钢液后出渣,又称挡渣出钢。这种出钢方式的优点主要是能提高某些包中合金化元素的收得率和稳定钢液的化学成分,缺点是钢液降温快,包中脱氧、脱硫能力差。

(3)是上述两种出钢方式的结合。一般先渣钢混中,大口喷吐一阵,然后再挡渣出钢,最后大量出渣;也可先挡渣出钢,然后渣钢混中,大口喷吐,炼钢工可根据需要随意选择。

三、电炉的出钢操作

传统电炉的出钢由于炉体倾动角度较大,因此出钢前首先要适当升高电极,特别是靠近出钢口处的电极尤要注意,电极过高渣液降温快不易流出,如采用吊车吊包出钢,影响吊车的运转;电极过低易使钢液增碳。然后切断电源,严禁带电出钢,以防短路。出钢口要掏大,为保证钢液的纯洁,堵塞物不准推进炉内。出钢时还要尽量缩短时间,以减少钢液的二次氧化与吸气。另外,也严防细流、散流、呛流出钢。因细流、散流出钢不仅能使钢液降温快,出钢动力学条件也不好,进而影响包中的脱氧、脱硫及非金属夹杂物的上浮与去除;呛流出钢容量造成渣钢横溢飞溅,从而增加了出钢后的清理量。除此之外,出钢过程中还要避免撞坏出钢槽或钢包、严防钢流冲击塞棒或包壁。

根据冶炼工艺要求,有的钢种需在出钢过程中进行终脱氧或调整化学成分,如加入铝块、硅钙块或加入硼铁、稀土元素及其他合金等,这时要选择合适的时机和出钢方式。在出钢过程中,值班人员和炼钢工及浇注工应注意观察出钢温度,综合其他情况确定镇静时间。出完钢后,应往塞杆周围的渣面上加些碳化稻壳或草灰,也可加些炭粉(但不够经济),然后打砸这部分渣盖,使其蓬松,预防钢液在镇静过程中,渣子将塞杆卡住而影响启闭或造成弯曲。对于高温钢液或碱度低的稀渣,应往塞杆周围加些石灰等物,以降低这部分渣温或使其变稠。

四、出钢温度的经验判断

目前,钢包的连续测温既简便又准确,已为钢的浇注提供了重要的温度参数。尽管如此,人们还是没有完全放弃出钢温度的经验判断,也就是说出钢温度的经验判断仍然具有较大的参考价值,常用的方法主要有以下几种:

(1)目测钢液的出钢温度。通常,出钢温度可在出钢过程并在有熔渣遮盖时,观察距出钢槽端部外1O0—200mm处的钢流颜色进行判断:

钢液呈暗红色,约在15500C以下;

钢液呈亮红色,约为16000C;

钢液呈青白色,约为16200C;

钢液呈青白色,出钢槽上部见白烟,约为l6300C;

钢液呈白色,出钢槽上部冒浓浓白烟,约为16500C;

钢液自炽耀眼,出钢槽上部白烟滚滚均在16700C以上。

锰含量较高的钢种,在出钢过程中,因锰元素的大量氧化所产生的烟雾,影响视线,如不仔细分辨难以判断真实的颜色。高合金钢中由于含有较高的Cr、Ni、W、Mo等元素,在出钢过程中,也极易使人们产生错觉。此外,就是出钢温度的目测还受衬托熔渣温度的影响,一般规律为:衬托的熔渣温度越高,目测钢液的温度越显得偏低,如后升温的出钢温度;而衬托的熔渣温度越低,目测钢液的温度就越显得偏高,如出钢前的换渣或停电急剧降温等的出钢温度。

对于装入量较多的大炉子,由于人口搅拌不好,在出钢过程中,钢液的颜色可能变换几次。这时应对前后不同的温度进行折算,不要用一时或一阵的钢液温度来代表全炉的出钢温度。

(2)利用包中熔渣的变化大概估计钢液的出钢温度。在出钢过程中,当钢液翻出一定量后,包中熔渣突然由稠变稀,说明出钢温度较高。如熔渣大有蚀断塞棒的趋势,说明出钢温度更高。当钢液出完后,包中熔渣稀稠的变化不大,说明出钢温度一般。

(3)利用包壁与渣钢间的熔融圈来判断钢液的出钢温度。还原渣对包壁的耐火材料有侵蚀,温度越高,这种侵蚀越严重,而包壁与渣盖间的熔融圈反映了这种侵蚀的程度。因此,熔融圈的状态也就能粗略表示出钢温度的高低:如包壁与渣盖间没有熔融圈,出钢温度一般均小于l600℃;如包壁与渣盖间仅是冒泡,出钢温度约为1610℃;如包壁与渣盖间出现熔融圈,出钢温度约有l620℃以上,熔融圈越宽,出钢温度越高;如熔融圈翻滚沸腾,出钢温度约在1650℃以上。当然,这种熔融圈与包衬的材质及熔渣的碱度有关,上述的结论主要适用于粘土砖的包壁和中等碱度的熔渣。

复 习 思 考 题

1.电炉有哪些冶炼方法?

2.电炉配料的基本要求是什么?

3.电炉装料有哪些要求?

4.炉料的熔化过程是怎样的?影响炉料熔化的因素有哪些?

5.熔化期应怎样操作?

6.氧化期的任务是什么? 氧化期脱碳有哪几种操作方法?

7.还原期精炼的任务是什么?

8.还原期脱氧操作的方法有哪几种?脱硫操作的强化措施有哪些?

9.还原期钢液温度如何调整?

10.电炉出钢的条件是什么? 有哪些出钢方法?如何操作出钢?

11.往炉中加入钼铁18kg,钢液中的钼含量由0.22%增到0.28%,已知钼铁中钼的成分为60%,求炉中钢液的实际重量?

12.冶炼38CrMoAlA钢。已知装料量为25t,炉料烧损为4%,炉中分析铝含量为0.05%,铝的控制规格成分为0.90%,铝锭中铝的成分为98%,铝的收得率为70%。求铝锭加入量?

  

爱华网本文地址 » http://www.413yy.cn/a/25101012/119249.html

更多阅读

何意百炼钢,化为绕指柔 百炼钢化成绕指柔

贾宝玉说女人是水做的,不仅因为女儿的柔弱妩媚,还有她们所要背负的太多,就像水一样默默地支撑着世间万物。女人有着水一样的柔情,又像水一样平淡叫人不忍忘记。那男人呢?何意百炼钢,化为绕指柔!陈伯伯悉心照顾老伴,脸上是浓浓的幸福天有不

4、砸锅搜铁大炼钢 砸锅卖铁养王爷

正道沧桑----探索毛泽东一生思想的演变过程查 坤 荣 著4、砸锅搜铁大炼钢1957年11月,毛泽东曾提出要在15年左右时间在钢铁等主要工业品的产量方面赶上和超过英国的口号。在“以钢为纲,全面跃进”和“钢铁元帅升帐”等等口号下,钢铁

声明:《电炉炼钢工艺 转炉炼钢》为网友陌人陌言分享!如侵犯到您的合法权益请联系我们删除