埃博拉病毒爆发的启示:变冷还是变暖?
杨学祥,杨冬红
西非地区自2014年2月陆续出现的埃博拉病毒越演越烈,世界卫生组织9月9日发布埃博拉疫情最新通报说,疫情已经造成近2300人丧生。在几内亚、利比里亚、塞拉利昂和尼日利亚等国肆虐的埃博拉疫情已经造成至少2296人死亡,病例数达到4293例。
http://news.sina.com.cn/w/2014-09-10/015330815924.shtml
人们大大低估了埃博拉病毒的危险性,麻痹大意可能造成历史性的大事件。确切地讲,与其说麻痹大意是无心而为,不如说是全球变暖浪潮蒙蔽了大多数公众:埃博拉病毒会在全球变暖中爆发吗?
你知道埃博拉是热症还是寒症?是在变热条件下容易爆发,还是在变冷条件下容易爆发?
20世纪80年代全球迅速变暖,21世纪全球变暖已停止16年。埃博拉病毒爆发是气候变冷的准确标志:在15-17世纪小冰期时期,瘟疫横行,灾难频发,对应紫外线变弱的太阳黑子超长极小期。
埃博拉病毒喜冷怕紫外线
研究表明,埃博拉病毒(EBV)在常温下较稳定,对热有中等度抵抗力,56℃不能完全灭活,60℃30分钟方能破坏其感染性;紫外线照射2分钟可使之完全灭活。对化学药品敏感,乙醚、去氧胆酸钠、β-丙内酯、福尔马林、次氯酸钠等消毒剂可以完全灭活病毒感染性;钴60照射、γ射线也可使之灭活。EBV在血液样本或病尸中可存活数周;4℃条件下存放5周其感染性保持不变,8周滴度降至一半。-70℃条件可长期保存。
显然,低温低紫外线是埃博拉病毒爆发的有利条件。
埃博拉病毒在拉马德雷冷位相强烈爆发
图1-2是1976年以来埃博拉病毒爆发与太阳黑子极值、拉马德雷现象的关系对比,初步结论是:在1977-1999年拉马德雷暖位相时期,埃博拉病毒经历了连续14年的最长间断期,其它时间爆发强度也不大,处于相对平稳期;在2000-2030年拉马德雷冷位相时期,埃博拉病毒爆发连续间断期不超过3年,爆发强度成倍增长,处于相对活跃期。
图1太阳黑子极值和拉马德雷冷位相对埃博拉病毒爆发的影响(据网上资料归纳)
图2 1976-2014年埃博拉病毒爆发的时间分布:1980-1994年之间无爆发(网上资料)
在1977-1999年拉马德雷暖位相时期,全球气候迅速变暖;在2000-2030年拉马德雷冷位相时期,全球变暖已停止16年,极端变冷事件频繁发生。埃博拉病毒怕热喜冷的特性得到实践证明。
埃博拉病毒在太阳黑子低值期活跃
埃博拉病毒与太阳黑子极值关系可从图1-3明显看到:在1955-2014年太阳黑子相对数变化中,2014年太阳黑子峰值时的最低值对应2014年埃博拉病毒最强爆发;1969年太阳黑子峰值时的次低值对应1976年埃博拉病毒第三位爆发(1969年无资料);2000年太阳黑子峰值时的第三低值对应2000年埃博拉病毒第二位爆发;而1979年太阳黑子峰值时的最高值对应1979年埃博拉病毒低位爆发,1989年太阳黑子峰值时的最高值对应1979年埃博拉病毒没有爆发,即1979年和1989年太阳黑子峰值时的最高值对应1980-1993年长达13年的埃博拉病毒爆发间歇期。
图3 1955-2014年太阳黑子相对数变化
2014年埃博拉病毒猛烈爆发,与21世纪太阳黑子超长极小期有关。太阳活动对流感爆发的影响人们早就发现。在太阳黑子超长极小期,太阳活动减弱,辐射出的紫外线也减弱,这有利于微生物和病毒的滋生和繁殖(见图4)。
图4太阳黑子超长极小期对埃博拉病毒爆发的影响(据网上资料归纳)
流感爆发的历史借鉴
1996年地球进入21世纪太阳黑子超长极小期,严重低温和低紫外线将导致多种病毒接连爆发。全球变暖持续16年停滞也是一个重要信号。
在十五世纪至十七世纪的二百余年内,全球强震发生频繁,其它自然灾害也很集中,如瘟疫流行,低温冻害严重,被称为小冰期时期。这个时期也正是蒙德太阳黑子超长极小值时期,太阳活动处于低值状态,有人把它看作是小冰期气候产生的原因(见表1)。
我们的研究表明,1996-2008年已进入21世纪太阳黑子超长极小期,严重低温和病毒爆发将成为大势所趋。2009年甲型流感爆发仅仅是一个最初信号。
2003年“非典”病毒爆发;
2009年甲型流感爆发;
2000年和2014年埃博拉病毒爆发;
2014年肠道病毒EV-D68爆发。
回顾和借鉴15-17世纪小冰期时代的瘟疫横行,对预测未来很有必要。
表1太阳黑子超长极小期、流感、瘟疫、气温和潮汐的对应关系
太阳黑子极小期 | 时间(年) | 潮汐极大年 | 流感 | 瘟疫 | 气温 |
欧特极小期 | 1040-1080 | 1062 | |||
沃尔夫极小期 | 1280-1350 | 1264 | 14世纪 | ||
史玻勒极小期 | 1450-1550 | 1425 | 1510,1580 | 持续300年 | 小冰期 |
蒙德极小期 | 1645-1715 | 1629 | 1675,1733 1742,1743 | 1665 | 小冰期 |
道尔顿极小期 | 1790-1820 | 1770 | 1889-1894 | 1894 | 小冰期 |
21世纪极小期 | 1996-?? | 1974 | 2009 | ?? | 变冷? |
2014年多种病毒接连爆发,与21世纪太阳黑子超长极小期有关。太阳活动对流感爆发的影响人们早就发现。在太阳黑子超长极小期,太阳活动减弱,辐射出的紫外线也减弱,这有利于微生物和病毒的滋生和繁殖。
流感病毒对热比较敏感,在56摄氏度下加热30分钟、60摄氏度下加热10分钟,65—70摄氏度下加热数分钟,流感病毒即丧失活性。直射阳光下40—48小时也可杀死该病毒,如果用紫外线直接照射,可迅速破坏其传染性。紫外线直射可依次破坏其感染力、血凝素活性和神经氨酸酶活性。但病毒对低温抵抗力较强,在有甘油保护的情况下可保持活力1年以上。由此看来,太阳黑子超长极小期时期的低温和低紫外线是流感暴发在其中的主要原因。
同样,1890-1924年和1947-1996年拉马德雷冷位相时期的低温也是1889、1899-1900、1918-1919年、1957-1958、1968-1969、1976年流感大爆发的原因。
2008-2014年处于太阳黑子超长极小期,同样是太阳黑子峰值,2014年的太阳黑子相对数仅仅是1989年的二分之一(见图3)。低温冻害频发是这一时期的特征。
判断太阳黑子超长极小期的第二种方法是,太阳黑子周期长度的变化。汤懋苍等人指出,依据太阳黑子周期长度(SCL)资料,将过去2500年分为"好天时代"(SCL<11年)和"坏天时代"(SCL>11年),发现在"坏天时代"中国旱灾频率显著高于"好天时代"。"好(坏)天世纪"与气候暖(冷)期有好的对应;太阳黑子延长极小期、冷气候和SCL长(即坏天时代)的对应关系见表1[9]。这表明,SCL长,太阳活动弱,全球气温降低,太阳黑子延长极小期和SCL长(坏天时代)一一对应。从公元850年起,我们可以确定的太阳黑子延长极小期就有5次之多,它们与潮汐最大值对应,与低温和小冰期对应。
从1996年太阳黑子谷值到2008年太阳黑子谷值,历时12.4年,大于11年的标准,表明1996年开始地球已进入太阳黑子超长极小期。
太阳将进入不寻常且时间较长的“超级安静模式”,大约从2020年开始,太阳黑子活动或许会消失几年甚至几十年。太阳黑子活动或许将进入“冬眠”,这种情况自17世纪以来从未出现⑨。目前处于200年气候周期的变冷初期。
埃博拉病毒在2014年猛烈爆发,这是大自然对太阳黑子超长极小期的回应,是气候变冷和灾害频发的警报。人们已经忽视了2009年甲型流感爆发的警告:全球已进入变冷周期。
埃博拉病毒爆发的启示不能忽视!
参考文献
马宗晋,杜品仁.现今地壳运动问题[M].北京:地质出版社,1995, 10: 99-102
杨冬红,杨学祥,刘财。2004年12月26日印尼地震海啸与全球低温。地球物理学进展。2006,21(3):1023-1027
杨冬红,杨学祥。流感世界大流行的气候特征。沙漠与绿洲气象。2007,1(3):1-8。
杨冬红,杨德彬,杨学祥。地震和潮汐对气候波动变化的影响。地球物理学报。2011,54(4):926-934.
杨冬红,杨学祥.全球气候变化的成因初探.地球物理学进展.2013, 28(4): 1666-1677.
杨学祥.给"全球变暖说"泼点冷水.世界环境.2007, (2): 60-62.
杨学祥。全球变暖还是变冷。科技潮,2006,(9):20-22
http://blog.sciencenet.cn/blog-2277-826254.html
http://blog.sciencenet.cn/blog-2277-826548.html