T检验和F检验自由度 f检验和t检验的关系

1,T检验和F检验的由来

一般而言,为了确定从样本(sample)统计结果推论至总体时所犯错的概率,我们会利用统计学家所开发的一些统计方法,进行统计检定。

通过把所得到的统计检定值,与统计学家建立了一些随机变量的概率分布(probabilitydistribution)进行比较,我们可以知道在多少%的机会下会得到目前的结果。倘若经比较后发现,出现这结果的机率很少,亦即是说,是在机会很少、很罕有的情况下才出现;那我们便可以有信心的说,这不是巧合,是具有统计学上的意义的(用统计学的话讲,就是能够拒绝虚无假设nullhypothesis,Ho)。相反,若比较后发现,出现的机率很高,并不罕见;那我们便不能很有信心的直指这不是巧合,也许是巧合,也许不是,但我们没能确定。

F值和t值就是这些统计检定值,与它们相对应的概率分布,就是F分布和t分布。统计显著性(sig)就是出现目前样本这结果的机率。

2,统计学意义(P值或sig值)
结果的统计学意义是结果真实程度(能够代表总体)的一种估计方法。专业上,p值为结果可信程度的一个递减指标,p值越大,我们越不能认为样本中变量的关联是总体中各变量关联的可靠指标。p值是将观察结果认为有效即具有总体代表性的犯错概率。如p=0.05提示样本中变量关联有5%的可能是由于偶然性造成的。即假设总体中任意变量间均无关联,我们重复类似实验,会发现约20个实验中有一个实验,我们所研究的变量关联将等于或强于我们的实验结果。(这并不是说如果变量间存在关联,我们可得到5%或95%次数的相同结果,当总体中的变量存在关联,重复研究和发现关联的可能性与设计的统计学效力有关。)在许多研究领域,0.05的p值通常被认为是可接受错误的边界水平。


3,T检验和F检验

至於具体要检定的内容,须看你是在做哪一个统计程序。

举一个例子,比如,你要检验两独立样本均数差异是否能推论至总体,而行的t检验。
两样本(如某班男生和女生)某变量(如身高)的均数并不相同,但这差别是否能推论至总体,代表总体的情况也是存在著差异呢?
会不会总体中男女生根本没有差别,只不过是你那麼巧抽到这2样本的数值不同?
为此,我们进行t检定,算出一个t检定值。
与统计学家建立的以「总体中没差别」作基础的随机变量t分布进行比较,看看在多少%的机会(亦即显著性sig值)下会得到目前的结果。
若显著性sig值很少,比如<0.05(少於5%机率),亦即是说,「如果」总体「真的」没有差别,那麼就只有在机会很少(5%)、很罕有的情况下,才会出现目前这样本的情况。虽然还是有5%机会出错(1-0.05=5%),但我们还是可以「比较有信心」的说:目前样本中这情况(男女生出现差异的情况)不是巧合,是具统计学意义的,「总体中男女生不存差异」的虚无假设应予拒绝,简言之,总体应该存在著差异。

每一种统计方法的检定的内容都不相同,同样是t-检定,可能是上述的检定总体中是否存在差异,也同能是检定总体中的单一值是否等於0或者等於某一个数值。

至於F-检定,方差分析(或译变异数分析,Analysis ofVariance),它的原理大致也是上面说的,但它是透过检视变量的方差而进行的。它主要用于:均数差别的显著性检验、分离各有关因素并估计其对总变异的作用、分析因素间的交互作用、方差齐性(Equalityof Variances)检验等情况。

3,T检验和F检验的关系

t检验过程,是对两样本均数(mean)差别的显著性进行检验。惟t检验须知道两个总体的方差(Variances)是否相等;t检验值的计算会因方差是否相等而有所不同。也就是说,t检验须视乎方差齐性(Equalityof Variances)结果。所以,SPSS在进行t-test for Equality ofMeans的同时,也要做Levene's Test for Equality of Variances 。

1.
在Levene's Test for Equality of Variances一栏中 F值为2.36,Sig.为.128,表示方差齐性检验「没有显著差异」,即两方差齐(EqualVariances),故下面t检验的结果表中要看第一排的数据,亦即方差齐的情况下的t检验的结果。

2.
在t-test for Equality of Means中,第一排(Variances=Equal)的情况:t=8.892,df=84, 2-Tail Sig=.000, Mean Difference=22.99
既然Sig=.000,亦即,两样本均数差别有显著性意义!

3.
到底看哪个Levene's Test for Equality of Variances一栏中sig,还是看t-test forEquality of Means中那个Sig. (2-tailed)啊?
答案是:两个都要看。
先看Levene's Test for Equality ofVariances,如果方差齐性检验「没有显著差异」,即两方差齐(EqualVariances),故接著的t检验的结果表中要看第一排的数据,亦即方差齐的情况下的t检验的结果。
T检验和F检验自由度 f检验和t检验的关系
反之,如果方差齐性检验「有显著差异」,即两方差不齐(UnequalVariances),故接著的t检验的结果表中要看第二排的数据,亦即方差不齐的情况下的t检验的结果。

4.
你做的是T检验,为什么会有F值呢?
就是因为要评估两个总体的方差(Variances)是否相等,要做Levene's Test for Equality ofVariances,要检验方差,故所以就有F值。

另一种解释:

t检验有单样本t检验,配对t检验和两样本t检验。

单样本t检验:是用样本均数代表的未知总体均数和已知总体均数进行比较,来观察此组样本与总体的差异性。

配对t检验:是采用配对设计方法观察以下几种情形,1,两个同质受试对象分别接受两种不同的处理;2,同一受试对象接受两种不同的处理;3,同一受试对象处理前后。

F检验又叫方差齐性检验。在两样本t检验中要用到F检验。

从两研究总体中随机抽取样本,要对这两个样本进行比较的时候,首先要判断两总体方差是否相同,即方差齐性。若两总体方差相等,则直接用t检验,若不等,可采用t'检验或变量变换或秩和检验等方法。

其中要判断两总体方差是否相等,就可以用F检验。

若是单组设计,必须给出一个标准值或总体均值,同时,提供一组定量的观测结果,应用t检验的前提条件就是该组资料必须服从正态分布;若是配对设计,每对数据的差值必须服从正态分布;若是成组设计,个体之间相互独立,两组资料均取自正态分布的总体,并满足方差齐性。之所以需要这些前提条件,是因为必须在这样的前提下所计算出的t统计量才服从t分布,而t检验正是以t分布作为其理论依据的检验方法。

简单来说就是实用T检验是有条件的,其中之一就是要符合方差齐次性,这点需要F检验来验证。


怎么用F值和Sig(概率)值判断方差齐性是否齐性?方差是否齐不是这样检验的,专门在spss中有

One-Way ANOVA对话方块中,点击Options…(选项…)按扭,

勾Homogeneity-of-variance即可。它会产生

Levene、Cochran C、Bartlett-BoxF等检验值及其显著性水平P值,若P值<于0.05,便拒绝方差整齐的假设。

顺带一提,Cochran和Bartlett检定对非正态性相当敏感,若出现「拒绝方差整齐」的检测结果,或因这原因而做成。

在方差分析的F检验中,是以各个实验组内总体方差齐性为前提的,因此,按理应该在方差分析之前,要对各个实验组内的总体方差先进行齐性检验。如果各个实验组内总体方差为齐性,而且经过F检验所得多个样本所属总体平均数差异显著,这时才可以将多个样本所属总体平均数的差异归因于各种实验处理的不同所致;如果各个总体方差不齐,那么经过F检验所得多个样本所属总体平均数差异显著的结果,可能有一部分归因于各个实验组内总体方差不同所致。

但是,方差齐性检验也可以在F检验结果为多个样本所属总体平均数差异显著的情况下进行,因为F检验之后,如果多个样本所属总体平均数差异不显著,就不必再进行方差齐性检验。

Levene方差齐性检验也称为Levene检验(Levene'sTest).由H.Levene在1960年提出[1].M.B.Brown和A.B.Forsythe在1974年对Levene检验进行了扩展[2],使对原始数据的数据转换不但可以使用数据与算术平均数的绝对差,也可以使用数据与中位数和调整均数(trimmedmean)的绝对差.这就使得Levene检验的用途更加广泛.Levene检验主要用于检验两个或两个以上样本间的方差是否齐性.要求样本为随机样本且相互独立.国内常见的Bartlett多样本方差齐性检验主要用于正态分布的资料,对于非正态分布的数据,检验效果不理想.Levene检验既可以用于正态分布的资料,也可以用于非正态分布的资料或分布不明的资料,其检验效果比较理想.

方差分析的条件之一为方差齐,即各总体方差相等。因此在方差分析之前,应首先检验各样本的方差是否具有齐性。常用方差齐性检验(testfor homogeneity ofvariance)推断各总体方差是否相等。用自由度查界值表,若值大于等于界值,则P值小于等于相应的概率,反之,P值大于相应的概率。如果未经校正的值小于界值,则校正后的值更小,可不必再计算校正值。


PS:何为“自由度”?
自由度,很多统计量的计算公式中都有自由度的概念,可为什么同样是计算标准差,总体标准差的自由度是n,而样本标准差的自由度就是n-1?为什么其它公式中的自由度还有n-2、n-3呢?它到底是什么含意?在统计模型中,自由度指样本中可以自由变动的变量的个数,当有约束条件时,自由度减少自由度计算公式:自由度=样本个数-样本数据受约束条件的个数,即df= n - k(df自由度,n样本个数,k约束条件个数).

一般总体方差(sigma^2),其实它是衡量所有数据对于中心位置(总体平均)平均差异的概念,所以也称为离散程度,通常表示为sum(Xi-Xbar)^1/2/N,(有多少个数据就除多少)而样本方差(S^2),则是利用样本数据所计算出来估计总体变异用的(样本统计量的基本目的:少量资料估计总体).一般习惯上,总体怎么算,样本就怎么算,可是在统计上估计量(或叫样本统计量)必须符合一个特性--无偏性,也就是估计量的数学期望值要等于被估计的总体参数=>E(S^2)=sigma^2(无偏估计)。很不幸的,样本变异数E(S^2)并不会等于sigma^2所以必须做修正,而修正后即为sum(Xi-Xbar)^2/(N-1).才会继续带出后来的自由度概念。通俗点说,一个班上有50个人,我们知道他们语文成绩平均分为80,现在只需要知道49个人的成绩就能推断出剩下那个人的成绩。你可以随便报出49个人的成绩,但是最后一个人的你不能瞎说,因为平均分已经固定下来了,自由度少一个了。例如,一组数据,平均数一定,则这组数据有n-1个数据可以自由变化;如一组数据平均数一定,标准差也一定,则有n-2个数据可以自由变化。

  

爱华网本文地址 » http://www.413yy.cn/a/25101011/72685.html

更多阅读

老君VS如来——孔雀为母 孔雀明王和如来的关系

在西游记中,有两个最厉害的角色:道派的太上老君和佛派的如来。老君称为道祖,是道派的创始人,如来称为佛祖,是佛派的创始人,两派是明争暗斗,但是我们没有看到道祖和佛祖直接的战斗,甚至连两个人在一起说话的场景多没有,很多人多想知道,道祖和佛

T检验和F检验自由度 f检验和t检验的关系

1,T检验和F检验的由来一般而言,为了确定从样本(sample)统计结果推论至总体时所犯错的概率,我们会利用统计学家所开发的一些统计方法,进行统计检定。通过把所得到的统计检定值,与统计学家建立了一些随机变量的概率分布(probabilitydist

★蚂蚁摄影★:教你光圈、快门和感光度的关系

Hello!大家好!我们是蚂蚁摄影,您身边的好朋友。不要枯燥,不要复杂,不要理论,在本类文章中蚂蚁摄影会用最通俗易懂的语言给大家介绍一些摄影的专业术语和原理,让您在短短10分钟内就搞懂其中的玄机。今天,蚂蚁摄影给大家介绍一下光圈、快门和

时域和频域的关系 时域和复频域

时域和频域的关系时域是大家平时接触比较多的,比如正弦交流电电压曲线,描述的是电压值和时间之间的关系,表现出不同时刻电压的大小。有些器件与频率有关,比如放大电路,对于频率不同的信号放大能力不同,那么这个时候就需要一个描述放大倍

声明:《T检验和F检验自由度 f检验和t检验的关系》为网友打野的高级教官分享!如侵犯到您的合法权益请联系我们删除