命令 β分布的参数a和b的最大似然估计值和置信区间
函数 betafit
格式 PHAT=betafit(X)
[PHAT,PCI]=betafit(X,ALPHA)
说明 PHAT为样本X的β分布的参数a和b的估计量
PCI为样本X的β分布参数a和b的置信区间,是一个2×2矩阵,其第1例为参数a的置信下界和上界,第2例为b的置信下界和上界,ALPHA为显著水平,(1-α)×100%为置信度。
命令 正态分布的参数估计
函数 normfit
格式 [muhat,sigmahat,muci,sigmaci] = normfit(X)
[muhat,sigmahat,muci,sigmaci] = normfit(X,alpha)
说明muhat,sigmahat分别为正态分布的参数μ和σ的估计值,muci,sigmaci分别为置信区间,其置信度为(1-alpha)*100%;alpha给出显著水平α,缺省时默认为0.05,即置信度为95%。
命令 利用mle函数进行参数估计
函数 mle
格式 phat=mle('dist',X) %返回用dist指定分布的最大似然估计值
[phat, pci]=mle('dist',X) %置信度为95%
[phat, pci]=mle('dist',X,alpha) %置信度由alpha确定
[phat, pci]=mle('dist',X,alph,pl) %仅用于二项分布,pl为试验次数。
说明 dist为分布函数名,如:beta(分布)、bino(二项分布)等,X为数据样本,alpha为显著水平α,(1-alpha)*100%为置信度。
其他
函数名 | 调 用 形 式 | 函 数 说 明 |
binofit | PHAT= binofit(X, N) [PHAT, PCI] = binofit(X,N) [PHAT, PCI]= binofit (X, N, ALPHA) | 二项分布的概率的最大似然估计 置信度为95%的参数估计和置信区间 返回水平α的参数估计和置信区间 |
poissfit | Lambdahat=poissfit(X) [Lambdahat, Lambdaci] = poissfit(X) [Lambdahat, Lambdaci]= poissfit (X, ALPHA) | 泊松分布的参数的最大似然估计 置信度为95%的参数估计和置信区间 返回水平α的λ参数和置信区间 |
normfit | [muhat,sigmahat,muci,sigmaci] = normfit(X) [muhat,sigmahat,muci,sigmaci] = normfit(X, ALPHA) | 正态分布的最大似然估计,置信度为95% 返回水平α的期望、方差值和置信区间 |
betafit | PHAT =betafit (X) [PHAT, PCI]= betafit (X, ALPHA) | 返回β分布参数a和 b的最大似然估计 返回最大似然估计值和水平α的置信区间 |
unifit | [ahat,bhat] = unifit(X) [ahat,bhat,ACI,BCI] = unifit(X) [ahat,bhat,ACI,BCI]=unifit(X, ALPHA) | 均匀分布参数的最大似然估计 置信度为95%的参数估计和置信区间 返回水平α的参数估计和置信区间 |
expfit | muhat =expfit(X) [muhat,muci] = expfit(X) [muhat,muci] = expfit(X,alpha) | 指数分布参数的最大似然估计 置信度为95%的参数估计和置信区间 返回水平α的参数估计和置信区间 |
gamfit | phat =gamfit(X) [phat,pci] = gamfit(X) [phat,pci] = gamfit(X,alpha) | γ分布参数的最大似然估计 置信度为95%的参数估计和置信区间 返回最大似然估计值和水平α的置信区间 |
weibfit | phat = weibfit(X) [phat,pci] = weibfit(X) [phat,pci] = weibfit(X,alpha) | 韦伯分布参数的最大似然估计 置信度为95%的参数估计和置信区间 返回水平α的参数估计及其区间估计 |
Mle | phat = mle('dist',data) [phat,pci] = mle('dist',data) [phat,pci] = mle('dist',data,alpha) [phat,pci] = mle('dist',data,alpha,p1) | 分布函数名为dist的最大似然估计 置信度为95%的参数估计和置信区间 返回水平α的最大似然估计值和置信区间 仅用于二项分布,pl为试验总次数 |