下面是一个4*4的矩阵键盘,是我们老师为了给我们练手而买的,今天上午老师让我们编写了键盘扫描程序,并用板上的LED显示出来。这里有三个程序,前面两个是别人写的,后面一个是我自己写的。
网上下的程序如下:
module key
(clk, //50MHZ
reset,
row, //行
col, //列
key_value//键值
);
input clk,reset;
input [3:0] row;
output [3:0] col;
output [3:0] key_value;
reg [3:0] col;
reg [3:0] key_value;
reg [5:0] count;//delay_20ms
reg [2:0] state; //状态标志
reg key_flag; //按键标志位
reg clk_500khz; //500KHZ时钟信号
reg [3:0] col_reg; //寄存扫描列值
reg [3:0] row_reg; //寄存扫描行值
always @(posedge clk or negedge reset)
if(!reset) begin clk_500khz<=0;count<=0; end
else
begin
if(count>=50) beginclk_500khz<=~clk_500khz;count<=0;end
else count<=count+1;
end
always @(posedge clk_500khz or negedge reset)
if(!reset) begincol<=4'b0000;state<=0;end
else
begin
case (state)
0:
begin
col[3:0]<=4'b0000;
key_flag<=1'b0;
if(row[3:0]!=4'b1111) beginstate<=1;col[3:0]<=4'b1110;end//有键按下,扫描第一行
else state<=0;
end
1:
begin
if(row[3:0]!=4'b1111) beginstate<=5;end//判断是否是第一行
else beginstate<=2;col[3:0]<=4'b1101;end//扫描第二行
end
2:
begin
if(row[3:0]!=4'b1111) beginstate<=5;end//判断是否是第二行
else beginstate<=3;col[3:0]<=4'b1011;end//扫描第三行
end
3:
begin
if(row[3:0]!=4'b1111) beginstate<=5;end//判断是否是第三一行
else beginstate<=4;col[3:0]<=4'b0111;end//扫描第四行
end
4:
begin
if(row[3:0]!=4'b1111) beginstate<=5;end //判断是否是第一行
else state<=0;
end
5:
begin
if(row[3:0]!=4'b1111)
begin
col_reg<=col; //保存扫描列值
row_reg<=row; //保存扫描行值
state<=5;
key_flag<=1'b1; //有键按下
end
else
begin state<=0;end
end
endcase
end
always @(clk_500khz or col_reg or row_reg)
begin
if(key_flag==1'b1)
begin
case ({col_reg,row_reg})
8'b1110_1110:key_value<=0;
8'b1110_1101:key_value<=1;
8'b1110_1011:key_value<=2;
8'b1110_0111:key_value<=3;
8'b1101_1110:key_value<=4;
8'b1101_1101:key_value<=5;
8'b1101_1011:key_value<=6;
8'b1101_0111:key_value<=7;
8'b1011_1110:key_value<=8;
8'b1011_1101:key_value<=9;
8'b1011_1011:key_value<=10;
8'b1011_0111:key_value<=11;
8'b0111_1110:key_value<=12;
8'b0111_1101:key_value<=13;
8'b0111_1011:key_value<=14;
8'b0111_0111:key_value<=15;
endcase
end
end
endmodule
另一个程序,和上面的思想一样:
module key44
(
code,
col,
valid,
row,
sys_clk ,
rst
);
//-------------------------------------------------------------------------------------------------
// Port declaration
output [3:0]col;
outputvalid ;
output [3:0]code ;
input[3:0]row;
inputsys_clk,rst;
//-------------------------------------------------------------------------------------------------
//
reg[3:0] col,code;
reg[5:0] state,next_state;
parameter S_0 = 6'b000001,
S_1 = 6'b000010,
S_2 = 6'b000100,
S_3 = 6'b001000,
S_4 = 6'b010000,
S_5 = 6'b100000;
regS_row ;
reg [3:0] count,row_reg,col_reg;
regclk2,clk4;
reg [4:0] Mega_cnt;
wireclk;
always @( posedge sys_clk, negedge rst )
begin
if(!rst)Mega_cnt<=0;
elseMega_cnt<=Mega_cnt+1;
end
assign clk = Mega_cnt[4];
// Frequency Division Two
always @( posedge clk )
clk2 <= ~clk2;
// A quarter of the clk
always @( posedge clk2 )
clk4 <= ~clk4;
always @( posedge clk4, negedge rst )
if(!rst)
begin
count <= 0;
S_row <= 0;
end
else
begin
if(!(row[0]&row[1]&row[2]&row[3]))
begin
if(count < 'd4) count<= count +1;// Filter
elseS_row <= 1;
end
else if((state == S_0) || (state == S_5))
begin
count <= 0;
S_row <= 0;
end
end
assign valid = ((state == S_1)||(state == S_2)||(state ==S_3)||(state == S_4))&&(!(row[3]&row[2]&row[1]&row[0]));
// Save the value of row and col
always @( negedge clk )
if( valid )
begin
row_reg <= row ;
col_reg <= col ;
end
// Decode the Key
always @( row_reg, col_reg, clk )
case( {row_reg,col_reg} )
8'B1110_1110: code = 4'hd;
8'B1110_1101: code = 4'h9;
8'B1110_1011: code = 4'h5;
8'B1110_0111: code = 4'h1;
8'B1101_1110: code = 4'he;
8'B1101_1101: code = 4'ha;
8'B1101_1011: code = 4'h6;
8'B1101_0111: code = 4'h2;
8'B1011_1110: code = 4'hf;
8'B1011_1101: code = 4'hb;
8'B1011_1011: code = 4'h7;
8'B1011_0111: code = 4'h3;
8'B0111_1110: code = 4'h0;
8'B0111_1101: code = 4'hc;
8'B0111_1011: code = 4'h8;
8'B0111_0111: code = 4'h4;
default: code = 4'h0;
endcase
always @( posedge clk4, negedge rst )
if( !rst )
state <= S_0 ;
else
state <= next_state ;
always @( state, row, S_row )
begin
col = 0;
// Decoding...
S_1 : begin
col = 4'b1110;
if(row!='hf)next_state = S_5;
elsenext_state = S_2;
end
S_2 : begin
col = 4'b1101;
if(row!='hf)next_state = S_5;
elsenext_state = S_3;
end
S_3 : begin
col = 4'b1011;
if(row!='hf)next_state = S_5;
elsenext_state = S_4;
end
S_4 : begin
col = 4'b0111;
if(row!='hf)next_state = S_5;
elsenext_state = S_0;
end
//----------------------------------------------
S_5 : begin
col = 4'b0000;
if(row == 4'b1111)next_state = S_0;
elsenext_state = S_5;
end
default: next_state = S_0;
endcase
end
endmodule
下面是我自己写的一个程序:
module Key_led(clk,row,col,key_temp);
input clk,row;
output key_temp,col;
reg[3:0]key_temp;//key temporary value
reg[3:0] col;
wire[3:0] row;
reg key_down , clk_100;
reg[1:0] key_curstate ,key_nexstate;
integer cont;
always @(posedge clk)
begin
if(cont==500000) cont=1;
else cont=cont+1;
if(cont==1) clk_100=1;
else clk_100=0;
end
initial begin
key_curstate=2'b00;
end
always @(posedge clk_100)
begin
if(row!=4'b1111) key_down=1;
else key_down=0;
end
always @(posedge clk_100)
begin
col=4'b0000;
case(key_curstate)
00:begin
if(key_down==0) key_nexstate=00;
else key_nexstate=10;
end
10:begin
if(key_down==0) key_nexstate=01;
else key_nexstate=11;
end
11:begin
if(key_down==0) key_nexstate=01;
else key_nexstate=11;
end
01:begin
if(key_down==0) key_nexstate=00;
else key_nexstate=10;
end
endcase
if(key_curstate==2'b11)begin
col=4'b0111;
if(row==4'b0111) key_temp=4'h0;
else if(row==4'b1011) key_temp=4'h4;
else if(row==4'b1101) key_temp=4'h8;
else if(row==4'b1110) key_temp=4'hc;
else begin
col=4'b1011;
if(row==4'b0111) key_temp=4'h1;
elseif(row==4'b1011) key_temp=4'h5;
elseif(row==4'b1101) key_temp=4'h9;
elseif(row==4'b1110) key_temp=4'hd;
elsebegin
col=4'b1101;
if(row==4'b0111) key_temp=4'h2;
else if(row==4'b1011) key_temp=4'h6;
else if(row==4'b1101) key_temp=4'ha;
else if(row==4'b1110) key_temp=4'he;
else begin
col=4'b1110;
if(row==4'b0111) key_temp=4'h3;
else if(row==4'b1011) key_temp=4'h7;
else if(row==4'b1101) key_temp=4'hb;
else if(row==4'b1110) key_temp=4'hf;
end
end
end
end
end
always @(posedge clk_100)
key_curstate=key_nexstate;
endmodule