本节课在教学方法上主要应用了创设情境--提出问题--建立模型--解决问题的思路,在实际教学中主要采用了精讲精练,学生自主学的教学方式。下面是小编为大家收集的3.3立方根教学反思,望大家喜欢。
3.3立方根教学反思范文一根据课程改革的要求,初中数学教学中通过课题学习,学生将经历探索、讨论、交流、应用数学知识解释有关问题的过程,从中体会数学的应用价值,发展自己数学思维能力,获得一些研究问题、解决问题的经验和方法,从而培养学生探究数学学习的兴趣,体验学习的成功。
在八年级的数学(上)中的《实数》中,我们遇到了《立方根》的教学任务。本章前两节的内容“平方根”“立方根”在内容安排上也有很多类似的地方,因此在教学中利用类比方法,让学生通过类比旧知识学习新知识。教学中突出立方根与平方根的对比,分析它们之间的联系与区别,这样新旧知识联系起来,既有利于复习巩固平方根,又有利于立方根的学习与掌握。通过独立思考,小组讨论,合作交流,学生在“自主探索,合作交流”中发挥了他们的主观能动性,感受了立方运算与开立方运算的互逆性,并学会了从立方根与立方是互逆运算中寻找解题信息途径。
本节课的教学设计是以人教版教材和课程标准为依据,在教学方法上突出体现了“创设情境-----提出问题-----建立模型-----解决问题”的思路,在实际教学中采用了学生自主学习的教学方式。
在导入新课时,创设了一个学生生活实际中常常见到的问题,“要制作一种容积为 的正方体形状的包装箱,这种包装箱的边长应该是多少?”让学生从实际问题情境中感受立方根的计算在生活中有着广泛的应用,体会学习立方根的必要性,激发学生的学习兴趣。紧接着设计问题1:算一算一些数的立方。在此处铺设了一个台阶,再设置了一个学生容易解决的问题,将学生的注意力从开立方运算向立方运算的思路引导,让学生对立方运算与开立方运算这间的互逆关系有初步的认识,为进一步探究新知作好准备。
在教学中安排了问题2:讨论数的立方根的特征,让学生计算正数、0、负数的立方根,寻找它们各自的特点,通过学生交流讨论活动,归纳得出“正数的立方根是正数,0的立方根是0,负数的立方根是负数”的结论,这样就让学生通过探究活动经历了一个由特殊到一般的认识过程。教学中注意为学生提供一定的探索和合作交流的空间,在探究活动的过程中以展学生的思维能力,有效改变学生的学习方式。
在问题3的环节中,设计了一个填空题:你能求出下列各式的值并用“ ”或“ ”填空吗?因为 _____, ____, 所以 __
因为 _____, _____, 所以
由以上运算,你能得出什么规律?让学生探讨了一个数的立方根与它的相反数的立方根的关系,由此可以将求负数的立方根的问题转化为求正数的立方根的问题,让学生体会转化的思想,并用式子表示出来,即 ,对学生印象是深刻的。
通过《立方根》的教学,本人对概念课的教学设计与教学实践有了更深入的了解。在新课程的实施过程中,我们欣喜地看到传统的接受式教学模式已被生动活泼的自主学习、交流合作数学活动所取代。课堂活起来了,学生动起来了,敢想、敢问、敢说、敢做、敢争论,充满着求知欲和表现欲。交流让学生分享快乐和共享资源,从生活出发的教学让学生感受到学习的快乐。
3.3立方根教学反思范文二本节课在教学方法上主要应用了创设情境--提出问题--建立模型--解决问题的思路,在实际教学中主要采用了精讲精练,学生自主学的教学方式。
在导入新课时,创设了一个学生生活中常常遇到的问题,让学生从实际问题出发,感受立方根在生活中有着广泛的应用,体会学习立方根的必要性,激发学生的学习兴趣,紧接着设计了问题,一个学生容易解决的问题,将学生的注意力从开立方运算向立方运算的思路引导,让学生对立方运算与开立方运算之间的互逆关系有初步的认识,为进一步探究新知做好准备。
本章前两节的内容,平方根和立方根之间在内容上有很多类似的地方,因此在教学中利用类比的方法,让学生通过类比旧知识学习新知识,教学中突出立方根和平方根的对比,分析他们之间的联系和区别,这样新旧知识联系起来,既有利于复习巩固平方根,又有利于立方根的理解和掌握,总结出来的“一二一”有助于学生生动的理解。通过独立思考,小组讨论,合作学习,学生能充分发挥他们的主观能动性,感受了立方运算和开立方的运算的互逆关系,并学会了从立方根和立方的逆运算中寻找解题的途径。
体现了现在教学中的精讲精练,学生的主体性得到了最好的呈现,老师在其过程中,起到引导和归纳角色,提出问题,让学生思考,老师不再讲,或者讲的很少,但要想当好这个“导演”老师确实要大量的时间备课,学生需要提前备课,课下工作量确实很大,但学生得到了表演,而且在班级里确实积极性得到了老师的肯定。
3.3立方根教学反思范文三
《立方根》八年级数学上学期《实数》第二节《立方根》第一课时的内容。立方根(1)的内容,是在学习了算术平方根、平方根的有关概念的基础上提出来的。本节从内容上看与上一节平方根的内容基本平行,主要研究立方根的概念和求法;从知识的展开顺序上看也基本相同,本节也是先从具体的计算出发归纳给出立方根的概念,然后讨论立方与开立方的互逆关系,研究立方根的特征。
在导入新课时,我采用了温故而知新法,让学生从以下几个问题入手:1.举例说明什么叫平方根,算术平方根?如何用符号表示数a(≥0)的平方根和算术平方根?2.正数有几个平方根?它们之间的关系是什么?负数有没有平方根?0平方根是什么?通过复习类比旧知,为新知的学习做好铺垫.
之后,我又创设了一个学生生活实际中常见的问题情境,“1.观察并思考:一个正方体的盒子边长是2厘米,你能求出它的体积吗”?
在此基础上,又设置了一个有挑战而学生又能解决的问题,“2.小明要制作一种容积为27cm3的正方体形状的包装箱,这种包装箱的边长应该是多少?你能帮帮他吗?”帮助朋友解决问题,同学的积极性被调动起来,同时也将学生的注意力朝着开立方运算向立方运算的思路引导,为进一步学习做好准备。在学生充分讨论的基础上教师给出解决问题的过程
在探究新知的环节,我在教学中主要采取类比学习的方法,首先让学生回忆平方根的概念及表示,并联系上面的问题,请学生归纳得出立方根的概念及表示。之后,一位学生也迫不及待地给出了立方根的概念即“一般地,如果一个数x的立方等于a,即x3=a,那么这个数x就叫做a的立方根(也叫做三次方根)。”“说得真棒。你能给大家举个例子说明一下吗?”如“23=6,2是6 的立方根,33=9,3是9的立方根。”他用询问的眼光等待着我的回答“我们班的孩子就是不一样,她对立方根的概念理解的很到位,只是?”“老师,我知道她的问题出在什么地方,他把乘方等同于乘法”然后她说出了正确的答案。“看来这位同学很细心,大家为她加油。我们还能举出其他的例子吗?”同学们在下面嘀咕了几句,有的不声不响地计算了起来,稍顷学生开始举手抢着举例,课堂气氛被调动了起来。