小学生经常要做手抄报,小编为大家收集了一些关于三年级小学生数学手抄报相关内容,希望能帮助到你们:
中国卓越数学家苏步青复旦大学名誉校长、中国数学会名誉理事长、中国科学院院士的苏步青(1902.9.23—)是一位德高望重的老数学家。他除了当民盟中央参议委员会主任之外,也是中国第七、八届全国政协副主席。他出生在浙江省平阳县腾蛟区带溪乡的一个农民家庭,他父母生了13个子女,他是次子。童年就要帮助家人割草、喂猪、放牛。由于家庭贫穷,六岁未能上学。他每天放牛路过私塾,就偷偷跑到窗口去偷看偷听老师教书。后来父亲看到他这么爱念书,在他9岁时全家吃杂粮,省下大米,借了几块钱,挑了一担米,带他到离家100里的平阳县唯一的一所小学当插班生。他认识了一些字后,就自己找书看,读《三国演义》、《水浒传》,甚至谈狐说鬼小孩子不容易懂的《聊斋志异》也被他翻阅了一二十遍。
苏步青的数学成就:1983年日本数学学会在广岛大学举办数学年会,中国数学会代表团获邀参加,当时苏步青是以团长身份,团员有胡和生教授和王元教授。在大会上,苏步青自我总结自1926年开始的五十多年的学术活动,环绕微分几何学的各专题,可大致分为五个阶段:
(1)1926-1930,主要搞仿射微分几何;
(2)1930-1940,重点研究射影微分几何;
(3)1940-1950,转入一般空间微分几何为重点;
(4)1950-1966,主攻射影共轭网理论;
(5)1966-,在计算几何领域。
在1983年,他已发表共153篇论文,写成了专著和教材10册。他被称誉为“经典微分几何学派”在中国的首创人。
微分几何是用现代的分析以代数、拓扑等工具来研究空间形式的一门学科,中国在文化大革命前,这方面的基础理论,曾接近和部分赶上或超过世界水平。文革期间由于科研停顿,这方面的工作就落后了。
几何大家陈省身认为,苏步青利用几何图形奇点的特性来表现整个圆形的不变量是他的工作特色。许多搞局部微分几何的学者,往往把奇点丢掉;而苏步青却从奇点来发掘隐藏的几何性质,思维方法是很独特。
1987年9月23日,是苏步青85岁生日,也是他执教,从事数学研究60周年,复旦大学和上海数学会举行祝贺苏步青60年数学与科研的会议,在大会上他的得意弟子谷超豪说:“苏老是国际上公认的几何学权威,他的仿射微分几何和射影微分几何的高水平工作,至今在国际数学界占着无可争辩的地位”。
苏步青对中国数学学科的建设建立了功勋。他在浙大、复旦为创建国内外有影响的学科,呕心沥血,他为中国文教事业的改革也作出了不可磨灭的贡献。他在1966年以来搞的计算几何,是他和学生刘鼎元,把代数曲线论中的仿射不变量方法,引入几何计算。他们利用这方法在船体放样,为造船工业作出了贡献。从而缩短船体建造周期,提高船体建造的质量,节省材料和工时消耗。
到了1983年,他们利用这些理论应用在设计汽车车身外形的设计。在九十年代,他们又在把这些计算几何的理论和方法,应用到开发建筑、服装、内燃机等行业的计算机辅助设计系统上。设计师可以从电脑的屏幕上修改设计方案。
数学家 刘徽刘徽(生于公元250年左右),是中国数学史上一个非常伟大的数学家,在世界数学史上,也占有杰出的地位.他的杰作《九章算术注》和《海岛算经》,是我国最宝贵的数学遗产.
《九章算术》约成书于东汉之初,共有246个问题的解法.在许多方面:如解联立方程,分数四则运算,正负数运算,几何图形的体积面积计算等,都属于世界先进之列,但因解法比较原始,缺乏必要的证明,而刘徽则对此均作了补充证明.在这些证明中,显示了他在多方面的创造性的贡献.他是世界上最早提出十进小数概念的人,并用十进小数来表示无理数的立方根.在代数方面,他正确地提出了正负数的概念及其加减运算的法则;改进了线性方程组的解法.在几何方面,提出了"割圆术",即将圆周用内接或外切正多边形穷竭的一种求圆面积和圆周长的方法.他利用割圆术科学地求出了圆周率π=3.14的结果.刘徽在割圆术中提出的"割之弥细,所失弥少,割之又割以至于不可割,则与圆合体而无所失矣",这可视为中国古代极限观念的佳作.
《海岛算经》一书中, 刘徽精心选编了九个测量问题,这些题目的创造性、复杂性和富有代表性,都在当时为西方所瞩目.
刘徽思想敏捷,方法灵活,既提倡推理又主张直观.他是我国最早明确主张用逻辑推理的方式来论证数学命题的人.
刘徽的一生是为数学刻苦探求的一生.他虽然地位低下,但人格高尚.他不是沽名钓誉的庸人,而是学而不厌的伟人,他给我们中华民族留下了宝贵的财富.
数学奇才——伽罗华1832年5月30日晨,在巴黎的葛拉塞尔湖附近躺着一个昏迷的年轻人,过路的农民从枪伤判断他是决斗后受了重伤,就把这个不知名的青年抬到医院。第二天早晨十点钟,他就离开了人世。数学史上最年轻、最有创造性的头脑停止了思考。人们说,他的死使数学发展推迟了好几十年。这个青年就是死时不满21岁的伽罗华。伽罗华生于离巴黎不远的一个小城镇,父亲是学校校长,还当过多年市长。家庭的影响使伽罗华一向勇往直前,无所畏惧。1823年,12岁的伽罗华离开双亲到巴黎求学,他不满足呆板的课堂灌输,自己去找最难的数学原著研究,一些老师也给他很大帮助。老师们对他的评价是“只宜在数学的尖端领域里工作”。 1828年,17岁的伽罗华开始研究方程论,创造了“置换群”的概念和方法,解决了几百年来使人头痛的方程来解决问题。伽罗华最重要的成就,是提出了“群”的概念,用群论改变了整个数学的面貌。1829年5月,伽罗华把他的成果写成论文,递交法国科学院,但伴随着这篇杰作而来的是一连串的打击和不幸。先是父亲因不堪忍受教士诽谤而自杀,接着因他的答辩既简捷又深奥令考官们不满而未能进入著名的巴黎综合技术学校。至于他的论文,先是被认为新概念太多又过于简略而要求重写;第二份推导详尽的稿子又因审稿人病逝而下落不明;1831年1月提交的第三份论文又因评阅人不能全部看懂而被否定。
青年伽罗华一方面追求数学的真知,另一方面又献身于追求社会正义的事业。在1831年法国的“七月革命”中,作为高等师范学校新生,伽罗华率领群众走上街头,抗议国王的专制统治,不幸被捕。在狱中,他染上了霍乱。即使在这样的恶劣条件下,伽罗华仍然继续搞他的数学研究,并且写成了论文,准备出狱后发表。出狱不久,因为卷入一场无聊的“爱情”纠葛而决斗身亡。伽罗华去世后16年,他留存下来的60页手稿才得以发表,科学界才传遍了他的名字。
数学之父——塞乐斯塞乐斯生于公元前624年,是古希腊第一位闻名世界的大数学家。他原是一位很精明的商人,靠卖橄榄油积累了相当财富后,塞乐斯便专心从事科学研究和旅行。他勤奋好学,同时又不迷信古人,勇于探索,勇于创造,积极思考问题。他的家乡离埃及不太远,所以他常去埃及旅行。在那里,塞乐斯认识了古埃及人在几千年间积累的丰富数学知识。他游历埃及时,曾用一种巧妙的方法算出了金字塔的高度,使古埃及国王阿美西斯钦羡不已。塞乐斯的方法既巧妙又简单:选一个天气晴朗的日子,在金字塔边竖立一根小木棍,然后观察木棍阴影的长度变化,等到阴影长度恰好等于木棍长度时,赶紧测量金字塔影的长度,因为在这一时刻,金字塔的高度也恰好与塔影长度相等。也有人说,塞乐斯是利用棍影与塔影长度的比等于棍高与塔高的比算出金字塔高度的。如果是这样的话,就要用到三角形对应边成比例这个数学定理。塞乐斯自夸,说是他把这种方法教给了古埃及人但事实可能正好相反,应该是埃及人早就知道了类似的方法,但他们只满足于知道怎样去计算,却没有思考为什么这样算就能得到正确的答案。在塞乐斯以前,人们在认识大自然时,只满足于对各类事物提出怎么样的解释,而塞乐斯的伟大之处,在于他不仅能作出怎么样的解释,而且还加上了为什么的科学问号。古代东方人民积累的数学知识,王要是一些由经验中总结出来的计算公式。塞乐斯认为,这样得到的计算公式,用在某个问题里可能是正确的,用在另一个问题里就不一定正确了,只有从理论上证明它们是普遍正确的以后,才能广泛地运用它们去解决实际问题。在人类文化发展的初期,塞乐斯自觉地提出这样的观点,是难能可贵的。它赋予数学以特殊的科学意义,是数学发展史上一个巨大的飞跃。所以塞乐斯素有数学之父的尊称,原因就在这里。塞乐斯最先证明了如下的定理:
1.圆被任一直径二等分。
2.等腰三角形的两底角相等。
3.两条直线相交,对顶角相等。
4.半圆的内接三角形,一定是直角三角形。
5.如果两个三角形有一条边以及这条边上的两个角对应相等,那么这两个三角形全等。这个定理也是塞乐斯最先发现并最先证明的,后人常称之为塞乐斯定理。相传塞乐斯证明这个定理后非常高兴,宰了一头公牛供奉神灵。后来,他还用这个定理算出了海上的船与陆地的距离。
塞乐斯对古希腊的哲学和天文学,也作出过开拓性的贡献。历史学家肯定地说,塞乐斯应当算是第一位天文学家,他经常仰卧观察天上星座,探窥宇宙奥秘,他的女仆常戏称,塞乐斯想知道遥远的天空,却忽略了眼前的美色。数学史家Herodotus层考据得知Hals战后之时白天突然变成夜晚(其实是日蚀),而在此战之前塞乐斯曾对Delians预言此事。 塞乐斯的墓碑上列有这样一段题辞:这位天文学家之王的坟墓多少小了一点,但他在星辰领域中的光荣是颇为伟大的。