数学很重要,数学被使用在世界不同的领域上,包括科学、工程、医学和经济学等。数学对这些领域的应用通常被称为应用数学,有时亦会激起新的数学发现,并导致全新学科的发展。下面小编带給大家的是6年级数学手抄报图,希望你们喜欢。
数学同力学的有机结合,是十八世纪数学的另一个鲜明特征。这种结合,其紧密的程度为数学史上任何时期所不能比拟。几乎所有的数学家都以巨大的热情,致力于运用微积分新工具去解决各种物理、力学问题。
6年级数学手抄报图:6年级数学手抄报图一
6年级数学手抄报图二
6年级数学手抄报资料:数学与力学开始结合欧拉的名字同流体力学和刚体运动的基本方程联系着;拉格朗日最享盛名的著作《分析力学》,“将力学变成了分析的一个分支”;拉普拉斯则把数学看作是研究力学天文学的工具,他的许多重要数学成果正是包含在他的五大卷《天体力学》中。
这种广泛的应用成为新的数学思想的源泉,而使数学本身的发展大大受惠。一系列新的数学分支在十八世纪成长起来。
达朗贝尔关于弦振动的著名研究,导出了弦振动方程及其最早的解,成为偏微分方程论的发端。另一类重要的偏微分方程——位势方程,主要通过对引力问题的进一步探讨而获得。与偏微分方程相联系的一些较为深入的理论问题也开始受到注意。
拉格朗日发展了解一阶偏微分方程的一般理论;对不同类型的二阶方程的研究还促使欧拉、达朗贝尔等具备了将函数展为三角级数的概念。
常微分方程的研究进展更为迅速。三体问题、摆的运动及弹性理论等的数学描述,引出了一系列的常微分方程,其中以三体问题最为重要,二阶常微分方程在其中扮演了中心角色。
数学家起先是采用各种特殊的技巧对付不同的方程,但渐渐地开始寻找带普遍性的方法。这样,欧拉推广了约翰第一·伯努利的积分因子和常数变易法;黎卡提在以他的名字命名的非线性方程的研究中,首创了后来成为处理高阶方程主要手段的降阶法;泰勒最先引起人们对奇异解存在性的注意;欧拉在1750年解出了一般的常系数线性方程,他还引进超几何级数作为解二阶线性方程的基础;对全微分方程的研究亦由欧拉、拉格朗日和蒙日等开展起来。
变分法起源于最速降曲线问题和相类似的一些问题,它的奠基人是欧拉。所谓“最速降曲线”问题,是要求出两点间的一条曲线,使质点在重力作用下,沿着它由一点至另一点的降落最快。这问题在1696年被约翰第一·伯努利提出来向其他人挑战,牛顿、洛必达和伯努利兄弟不久都分别获得了正确的解答。
欧拉自1728年开始以他特有的透彻精神重新考察了最速降曲线等问题,最终确立了求积分极值问题的一般方法。欧拉的方法后来又为拉格朗日所发展,拉格朗日首先将变分法置于分析的基础上,他还充分运用变分法来建造其分析力学体系,全部力学被他化归为一个统一的变分原理——虚功原理。
这些新的分支与微积分本身一起,形成了被称之为“分析”的广大领域,与代数、几何并列为数学的三大学科,在十八世纪,其繁荣程度远远超过了代数与几何。
十八世纪的数学家们不仅大大拓展了分析的疆域,同时赋予它与几何相对的意义,他们力图用纯分析的手法以摆脱对于几何论证的依赖,这种倾向成为十八世纪数学的另一大特征,并且在欧拉和拉格朗日的工作中表现得最为典型。
拉格朗日在《分析力学》序中宣称:“在这本书中找不到一张图,我所叙述的方法既不需要作图,也不需要任何几何的或力学的推理,只需要统一而有规则的代数(分析)运算”。