数学应用是数学教育的重要内容,呼唤数学应用意识,提高数学应用教学质量,数学手抄报可以提升学生对数学的兴趣。下面是小编为大家带来的数学天地手抄报内容,希望大家喜欢。
数学天地手抄报的图片
数学天地手抄报图(1)
数学天地手抄报图(2)
数学天地手抄报图(3)
数学天地手抄报图(4)
数学天地手抄报的资料
一、数学谜语
1) 爷爷参加百米赛跑(猜一数学家) 祖冲之
2) 数学老师的教鞭(打一数学名词) 指数
3) 八分之七(猜一成语) 七上八下
4) 7…(猜一成语) 丢三落四
5) 二四六八十(猜一成语) 无独有偶
6) 1%(猜一成语) 百里挑一
7) 100-1(猜一字) 白
8) 一加一(猜一字) 王
9) 3.4(猜一成语) 不三不四
10) 555,555,555(猜一成语) 三五成群
二、趣味数学题
郑板桥喝酒
清朝书画家郑板桥在山东潍县当县官时,有一年春天,他提着一壶酒在街上边走边饮,又是吟诗,又是画画,正好遇上老朋友计山,计山说:“光你一崐个人喝酒,也不说请我喝呀?”郑板桥说:“请倒是想请,只是你来晚了,我的酒已经喝完了。”计山问道:“你一个人喝了多少酒呀?”郑板桥“哈哈”一笑,吟出一首诗来:“我有一壶酒,提着街上走,吟诗添一倍,画画喝一斗。三作诗和画,喝光壶中酒。你说我壶中,原有多少酒?”计山眨着眼 想了半天,说:“我算出来了,你的壶中原来一共 有7/8斗酒。”郑板桥说:“对,你很聪明。”小朋友,你知道计山是怎样算出来的吗?
爱因斯坦的数学游戏
大科学家爱因斯坦小时候就特别聪明,有一次同学们在一起玩,他说:“我们做一个数学游戏怎么样?”同学们说:“怎么做法呢?爱因斯坦说:“你们随便想一个数,然后做一些运算,我就能知道你们一开始想的那个数是多少?”汤姆说:“我不信,但是我可以试一试。”爱因斯坦说:“那么好吧,现在开始。你心里随便想一个数吧。”“我想好了。”汤姆说。“在这个数上加上18。”
“再加上136。”
“减去27。”
“减去你所想的数。”
汤姆按照爱因斯坦的要求做了运算。他还没有说出答案,爱因斯坦就说:“最后得数是254。”
汤姆惊呆了,爱因斯坦说的一点也不错,可是他是怎么算出来的呢?
三、趣味数学小故事
一个最普通的火柴游戏就是两人一起玩,先置若干支火柴于桌上,两人轮流取,每次所取的数目可先作一些限制,规定取走最后一根 火柴者获胜。
规则一:若限制每次所取的火柴数目最少一根,最多三根,则如何玩才可致胜? 规则一:若限制每次所取的火柴数目最少一根,最多 三根,则如何玩才可致胜? 例如:桌面上有n=15根火柴,甲﹑乙 为了要取得最后一根,甲必须最后留下零根火柴给乙,故在最后一步之前的轮取中,甲不能 留下1根或2根或3根,否则乙就可以全部取走而获胜。如果留下4根,则乙不能全取,则不管乙取几根(1或2或3),甲必能取得所有剩下的 火柴而赢了游戏。同理,若桌上留有8根火柴让乙去取,则无论乙如何取,甲都可使这一次轮取后留下4根火柴,最后也一定是甲获胜。由上 之分析可知,甲只要使得桌面上的火柴数为4﹑8﹑12﹑16...等让乙去取,则甲必稳操胜券。因此若原先桌面上的火柴数为15,则甲应取3 根。(∵15-3=12)若原先桌面上的火柴数为18呢?则甲应先取2根(∵18-2=16)。
规则二:限制每次所取的火柴数目为1至4根,则又如何致胜? 原则:若甲先取,则甲每次取时,须留5的倍数的火柴给乙去取。 通则:有n支火柴,每次可取1至k支,则甲每次取后所留的火柴数目必须为 k+1 之倍数。
规则三:限制每次所取的火柴数目不是连续的数,而是一些 分析:1﹑3﹑7均为奇数,由于目标为0,而0为偶数,所以先取甲,须 使桌上的火柴数为偶数,因为乙在偶数的火柴数中,不可能再取去1﹑3﹑7根火柴后获得0,但假使如此也不能保证甲必赢,因为甲对于火 柴数的奇或偶,也是无法依照己意来控柴数的奇或偶,也是无法依照己意来控制的。因为〔偶-奇=奇,奇-奇=偶〕,所以每次取后,桌上 的火柴数奇偶相反。若开始时是奇数,如17,甲先取,则不论甲取多少(1或3或7),剩下的便是偶数,乙随后又把偶数变成奇数,甲又把
奇数回覆到偶数,最后甲是注定为赢家;反之,若开始时为偶数,则甲注定会输。
通则:开局是奇数,先取者必胜;反之,若开局为偶数,则先取者会输。 通则:开局是奇数,先取者必胜;反之,若开局为偶数,则先取者会输。
规则四:限制每次所 分析:如前规则二,若甲先取,则甲每次取时留5的倍数的火柴给乙去取,则甲必胜。此外,若甲留给乙取的 火 柴数为5之倍数加2时,甲也倍数加2时,甲也可赢得游戏,因为玩的时候可以控制每轮所取的火柴数为5(若乙取1,甲则取4;若乙取4,
则甲取1),最后剩下2根,那时乙只能取1,甲便可取得最后一根而获胜。
通则:若甲先取,则甲每次取时所留火柴数为5之倍数或5的倍数加2。 6、韩信点兵 甲先取,则甲每次取时所留火柴 韩信点 兵又称为中国剩余定理,相传汉高祖刘邦问大将军韩信统御兵士多少,韩信答说,每3人一列余1人、5人一列余2人、7人一列余4人、13人 一列余6人……。刘邦茫然而不知其数。 中国有一本数学古书「孙子算经」也有类似的问题:「今有物,不知其数,三三数之,剩二,五五数之,剩三,七七数之,剩二,问 剩三,七七数之,剩二,问物几何?」 答曰:「二十三」书「孙子算经」也有类似的问题 术曰:「三三数之剩二,置一百四十,五五数之剩三,置六十三,七七数之剩 二,置三十,并之,得二百三十三,以二百一十减之,即得。凡三三数之剩一,则置七十,五五数之剩一,则置二十一,七七数之剩一,则 置十五,即得。」 孙子算经的作者及确实着作年代均不可考,不过根据考证,着作年代不会在晋朝之后,以这个考证来说上面这种问题的解法,中国人 发现得比西方早,所以这个问题的推广及其解法,被称为中国剩余定理。中国剩余定理(Chinese Remainder Theorem)在近代抽象代数 学中占有一席非常重要的地位。
推荐其他主题的手抄报资料和图片作为参考:1.我的数学天地手抄报内容
2.数学天地的手抄报素材
3.数学手抄报图片大全数学天地
4.数学知识天地手抄报内容
5.数学手抄报数学天地
6.数学手抄报数学王国
7.数学小天地手抄报
8.数学手抄报的设计素材
9.数学手抄报的设计图片素材
10.小学二年级数学手抄报怎么写