高中数学生活应用论文 二次函数在高中阶段的应用数学论文

二次函数(quadratic function)的基本表示形式为y=ax²+bx+c(a≠0)。二次函数最高次必须为二次, 二次函数的图像是一条对称轴与y轴平行或重合于y轴的抛物线。今天小编要与大家分享的是:二次函数在高中阶段的应用相关数学论文。具体内容如下,欢迎阅读:

二次函数在高中阶段的应用

在初中教材中,对二次函数作了较详细的研究,由于初中学生基础薄弱,又受其接受能力的限制,这部份内容的学习多是机械的,很难从本质上加以理解。进入高中以后,尤其是高三复习阶段,要对他们的基本概念和基本性质(图像以及单调性、奇偶性、有界性)灵活应用,对二次函数还需再深入学习。

一、进一步深入理解函数概念

初中阶段已经讲述了函数的定义,进入高中后在学习集合的基础上又学习了映射,接着重新学习函数概念,主要是用映射观点来阐明函数,这时就可以用学生已经有一定了解的函数,特别是二次函数为例来加以更深认识函数的概念。二次函数是从一个集合A(定义域)到集合B(值域)上的映射ƒ:A→B,使得集合B中的元素y=ax2+bx+c(a≠0)与集合A的元素X对应,记为ƒ(x)= ax2+ bx+c(a≠0)这里ax2+bx+c表示对应法则,又表示定义域中的元素X在值域中的象,从而使学生对函数的概念有一个较明确的认识,在学生掌握函数值的记号后,可以让学生进一步处理如下问题:

类型I:已知ƒ(x)= 2x2+x+2,求ƒ(x+1)

这里不能把ƒ(x+1)理解为x=x+1时的函数值,只能理解为自变量为x+1的函数值。

类型Ⅱ:设ƒ(x+1)=x2-4x+1,求ƒ(x)

这个问题理解为,已知对应法则ƒ下,定义域中的元素x+1的象是x2-4x+1,求定义域中元素X的象,其本质是求对应法则。

一般有两种方法:

(1)把所给表达式表示成x+1的多项式。

ƒ(x+1)=x2-4x+1=(x+1)2-6(x+1)+6,再用x代x+1得ƒ(x)=x2-6x+6

(2) 变量代换:它的适应性强,对一般函数都可适用。

令t=x+1,则x=t-1 ∴(t)=(t-1)2-4(t-1)+1=t2-6t+6从而ƒ(x)= x2-6x+6

二、二次函数的单调性,最值与图像。

在高中阶阶段学习单调性时,必须让学生对二次函数y=ax2+bx+c在区间(-∞,-b2a]及[-b2a,+∞) 上的单调性的结论用定义进行严格的论证,使它建立在严密理论的基础上,与此同时,进一步充分利用函数图像的直观性,给学生配以适当的练习,使学生逐步自觉地利用图像学习二次函数有关的一些函数单调性。

类型Ⅲ:画出下列函数的图像,并通过图像研究其单调性。

(1)y=x2+2|x-1|-1

(2)y=|x2-1|

(3)= x2+2|x|-1

这里要使学生注意这些函数与二次函数的差异和联系。掌握把含有绝对值记号的函数用分段函数去表示,然后画出其图像。

类型Ⅳ设ƒ(x)=x2-2x-1在区间[t,t+1]上的最小值是g(t)。

求:g(t)并画出 y=g(t)的图像

解:ƒ(x)=x2-2x-1=(x-1)2-2,在x=1时取最小值-2

当1∈[t,t+1]即0≤t≤1,g(t)=-2

当t>1时,g(t)=ƒ(t)=t2-2t-1

当t<0时,g(t)=ƒ(t+1)=t2-2

t2-2, (t<0)

g(t)= -2,(0≤t≤1)

t2-2t-1, (t>1)

首先要使学生弄清楚题意,一般地,一个二次函数在实数集合R上或是只有最小值或是只有最大值,但当定义域发生变化时,取最大或最小值的情况也随之变化,为了巩固和熟悉这方面知识,可以再给学生补充一些练习。

如:y=3x2-5x+6(-3≤x≤-1),求该函数的值域。

高中数学生活应用论文 二次函数在高中阶段的应用数学论文
三、二次函数的知识,可以准确反映学生的数学思维:

类型Ⅴ:设二次函数ƒ(x)=ax2+bx+c(a>0)方程ƒ(x)-x=0的两个根x1,x2满足0

  

爱华网本文地址 » http://www.413yy.cn/a/204761/400282955.html

更多阅读

相似的图形课后反思 二次函数的应用教学反思

反思一:二次函数的应用教学反思二次函数的应用是学习二次函数的图像与性质后,检验学生应用所学知识解决实际问题能力的一个综合考查,它是本章的难点。新的课程标准要求学生能通过对实际问题的情境的分析确定二次函数的表达式,体会其意

数学必修二知识点归纳 高中数学必修2知识点总结

&#160;  高中数学必修2知识点总结   第一章 空间几何体  1.1柱、锥、台、球的结构特征  1.2空间几何体的三视图和直观图  1 三视图:  正视图:从前往后 侧视图:从左往右 俯视图:从上往下  2 画三视图的原则:  长对

必修二历史知识点归纳 高中数学必修四公式知识点归纳

&#160;  高中数学必修四公式知识点归纳  1.诱导公式1-6  2.向量共线公式 ,垂直公式,数量积公式.向量运算律公式.坐标公式.向量模公式  3.二倍角公式.降幂扩角公式.半角公式.升幂缩角公式.公式变形.余角公式.辅助角公式

声明:《高中数学生活应用论文 二次函数在高中阶段的应用数学论文》为网友蓝天下的迷彩分享!如侵犯到您的合法权益请联系我们删除